Suppr超能文献

铜绿假单胞菌对青霉烯类抗生素表现出高度的固有耐药性:青霉烯类耐药机制及其相互作用。

Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay.

作者信息

Okamoto K, Gotoh N, Nishino T

机构信息

Department of Microbiology, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan.

出版信息

Antimicrob Agents Chemother. 2001 Jul;45(7):1964-71. doi: 10.1128/AAC.45.7.1964-1971.2001.

Abstract

Pseudomonas aeruginosa exhibits high intrinsic resistance to penem antibiotics such as faropenem, ritipenem, AMA3176, sulopenem, Sch29482, and Sch34343. To investigate the mechanisms contributing to penem resistance, we used the laboratory strain PAO1 to construct a series of isogenic mutants with an impaired multidrug efflux system MexAB-OprM and/or impaired chromosomal AmpC beta-lactamase. The outer membrane barrier of PAO1 was partially eliminated by inducing the expression of the plasmid-encoded Escherichia coli major porin OmpF. Susceptibility tests using the mutants and the OmpF expression plasmid showed that MexAB-OprM and the outer membrane barrier, but not AmpC beta-lactamase, are the main mechanisms involved in the high intrinsic penem resistance of PAO1. However, reducing the high intrinsic penem resistance of PAO1 to the same level as that of penem-susceptible gram-negative bacteria such as E. coli required the loss of either both MexAB-OprM and AmpC beta-lactamase or both MexAB-OprM and the outer membrane barrier. Competition experiments for penicillin-binding proteins (PBPs) revealed that the affinity of PBP 1b and PBP 2 for faropenem were about 1.8- and 1.5-fold lower, than the respective affinity for imipenem. Loss of the outer membrane barrier, MexAB, and AmpC beta-lactamase increased the susceptibility of PAO1 to almost all penems tested compared to the susceptibility of the AmpC-deficient PAO1 mutants to imipenem. Thus, it is suggested that the high intrinsic penem resistance of P. aeruginosa is generated from the interplay among the outer membrane barrier, the active efflux system, and AmpC beta-lactamase but not from the lower affinity of PBPs for penems.

摘要

铜绿假单胞菌对培南类抗生素如法罗培南、利替培南、AMA3176、舒洛培南、Sch29482和Sch34343表现出高度的固有耐药性。为了研究导致培南耐药的机制,我们使用实验室菌株PAO1构建了一系列等基因突变体,这些突变体的多药外排系统MexAB - OprM受损和/或染色体AmpCβ-内酰胺酶受损。通过诱导质粒编码的大肠杆菌主要孔蛋白OmpF的表达,部分消除了PAO1的外膜屏障。使用这些突变体和OmpF表达质粒进行的药敏试验表明,MexAB - OprM和外膜屏障而非AmpCβ-内酰胺酶是PAO1高度固有培南耐药性的主要机制。然而,要将PAO1的高度固有培南耐药性降低到与对培南敏感的革兰氏阴性菌如大肠杆菌相同的水平,需要同时缺失MexAB - OprM和AmpCβ-内酰胺酶或者同时缺失MexAB - OprM和外膜屏障。青霉素结合蛋白(PBPs)的竞争实验表明,PBP 1b和PBP 2对法罗培南的亲和力分别比对亚胺培南的亲和力低约1.8倍和1.5倍。与AmpC缺陷的PAO1突变体对亚胺培南的敏感性相比,外膜屏障、MexAB和AmpCβ-内酰胺酶的缺失增加了PAO1对几乎所有测试培南的敏感性。因此,提示铜绿假单胞菌的高度固有培南耐药性是由外膜屏障、主动外排系统和AmpCβ-内酰胺酶之间的相互作用产生的,而不是由PBPs对培南的低亲和力导致的。

相似文献

1
Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay.
Antimicrob Agents Chemother. 2001 Jul;45(7):1964-71. doi: 10.1128/AAC.45.7.1964-1971.2001.
2
Extrusion of penem antibiotics by multicomponent efflux systems MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2002 Aug;46(8):2696-9. doi: 10.1128/AAC.46.8.2696-2699.2002.
4
Hypersusceptibility of the Pseudomonas aeruginosa nfxB mutant to beta-lactams due to reduced expression of the ampC beta-lactamase.
Antimicrob Agents Chemother. 2001 Apr;45(4):1284-6. doi: 10.1128/AAC.45.4.1284-1286.2001.

引用本文的文献

2
Recent Developments in Penem Antibiotics: Structural and Therapeutic Perspectives.
Molecules. 2025 May 11;30(10):2126. doi: 10.3390/molecules30102126.
5
New Agents Are Coming, and So Is the Resistance.
Antibiotics (Basel). 2024 Jul 13;13(7):648. doi: 10.3390/antibiotics13070648.
6
Synergistic effects of sulopenem in combination with cefuroxime or durlobactam against .
mBio. 2024 Jun 12;15(6):e0060924. doi: 10.1128/mbio.00609-24. Epub 2024 May 14.
7
Resistance in : A Narrative Review of Antibiogram Interpretation and Emerging Treatments.
Antibiotics (Basel). 2023 Nov 12;12(11):1621. doi: 10.3390/antibiotics12111621.
9
Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria.
Microorganisms. 2023 Jun 28;11(7):1690. doi: 10.3390/microorganisms11071690.
10
Identification of Efflux Substrates Using a Riboswitch-Based Reporter in Pseudomonas aeruginosa.
mSphere. 2023 Apr 20;8(2):e0006923. doi: 10.1128/msphere.00069-23. Epub 2023 Mar 22.

本文引用的文献

1
Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2000 Sep;44(9):2242-6. doi: 10.1128/AAC.44.9.2242-2246.2000.
5
Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides.
Antimicrob Agents Chemother. 1999 Nov;43(11):2624-8. doi: 10.1128/AAC.43.11.2624.
7
Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 1999 Feb;43(2):415-7. doi: 10.1128/AAC.43.2.415.
9
Characterization of the MexC-MexD-OprJ multidrug efflux system in DeltamexA-mexB-oprM mutants of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 1998 Aug;42(8):1938-43. doi: 10.1128/AAC.42.8.1938.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验