Suppr超能文献

中脑培养物代谢抑制过程中过氧化氢的清除及谷胱甘肽混合二硫化物的形成

Hydrogen peroxide removal and glutathione mixed disulfide formation during metabolic inhibition in mesencephalic cultures.

作者信息

Ehrhart J, Zeevalk G D

机构信息

UMDNJ-Robert Wood Johnson Medical School, Department of Neurology, Piscataway, New Jersey 08854, USA.

出版信息

J Neurochem. 2001 Jun;77(6):1496-507. doi: 10.1046/j.1471-4159.2001.00355.x.

Abstract

Compromised mitochondrial energy metabolism and oxidative stress have been associated with the pathophysiology of Parkinson's disease. Our previous experiments exemplified the importance of GSH in the protection of neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. This study further defines the role of oxidative stress during energy inhibition and begins to unravel the mechanisms by which GSH and other antioxidants may contribute to cell survival. Treatment of mesencephalic cultures with 10 microM buthionine sulfoximine for 24 h depleted total GSH by 60%, whereas 3 h exposure to 5 mM 3-amino-1,2,4-triazole irreversibly inactivated catalase activity by 90%. Treatment of GSH-depleted cells with malonate (40 mM) for 6, 12 or 24 h both potentiated and accelerated the time course of malonate toxicity, however, inhibition of catalase had no effect. In contrast, concomitant treatment with buthionine sulfoximine plus 3-amino-1,2,4-triazole in the presence of malonate significantly potentiated toxicity over that observed with malonate plus either inhibitor alone. Consistent with these findings, GSH depletion enhanced malonate-induced reactive oxygen species generation prior to the onset of toxicity. These findings demonstrate that early generation of reactive oxygen species during mitochondrial inhibition contributes to cell damage and that GSH serves as a first line of defense in its removal. Pre-treatment of cultures with 400 microM ascorbate protected completely against malonate toxicity (50 mM, 12 h), whereas treatment with 1 mM Trolox provided partial protection. Protein-GSH mixed disulfide formation during oxidative stress has been suggested to either protect vulnerable protein thiols or conversely to contribute to toxicity. Malonate exposure (50 mM) for 12 h resulted in a modest increase in mixed disulfide formation. However, exposure to the protective combination of ascorbate plus malonate increased membrane bound protein-GSH mixed disulfides three-fold. Mixed disulfide levels returned to baseline by 72 h of recovery indicating the reversible nature of this formation. These results demonstrate an early role for oxidative events during mitochondrial impairment and stress the importance of the glutathione system for removal of reactive oxygen species. Catalase may serve as a secondary defense as the glutathione system becomes limiting. These findings also suggest that protein-GSH mixed disulfide formation under these circumstances may play a protective role.

摘要

线粒体能量代谢受损和氧化应激与帕金森病的病理生理学相关。我们之前的实验例证了谷胱甘肽(GSH)在保护暴露于丙二酸(一种线粒体琥珀酸脱氢酶/复合体II的可逆抑制剂)的神经元中的重要性。本研究进一步明确了能量抑制过程中氧化应激的作用,并开始揭示GSH和其他抗氧化剂可能有助于细胞存活的机制。用10微摩尔丁硫氨酸亚砜胺处理中脑培养物24小时,使总GSH减少60%,而暴露于5毫摩尔3-氨基-1,2,4-三唑3小时可使过氧化氢酶活性不可逆地失活90%。用丙二酸(40毫摩尔)处理GSH耗竭的细胞6、12或24小时,均增强并加速了丙二酸毒性的时间进程,然而,抑制过氧化氢酶则没有效果。相比之下,在丙二酸存在的情况下,同时用丁硫氨酸亚砜胺和3-氨基-1,2,4-三唑处理比单独使用丙二酸或单独使用任何一种抑制剂观察到的毒性显著增强。与这些发现一致,在毒性发作之前,GSH耗竭增强了丙二酸诱导的活性氧生成。这些发现表明,线粒体抑制过程中活性氧的早期生成导致细胞损伤,并且GSH在其清除过程中作为第一道防线。用400微摩尔抗坏血酸预处理培养物可完全保护细胞免受丙二酸毒性(50毫摩尔,12小时),而用1毫摩尔生育三烯酚处理则提供部分保护。氧化应激期间蛋白质-GSH混合二硫键的形成被认为要么保护易损的蛋白质硫醇,要么相反地导致毒性。暴露于丙二酸(50毫摩尔)12小时导致混合二硫键形成适度增加。然而,暴露于抗坏血酸加丙二酸的保护组合使膜结合的蛋白质-GSH混合二硫键增加了三倍。在恢复72小时后,混合二硫键水平恢复到基线,表明这种形成的可逆性质。这些结果证明了氧化事件在线粒体损伤过程中的早期作用,并强调了谷胱甘肽系统在清除活性氧方面的重要性。随着谷胱甘肽系统变得有限,过氧化氢酶可能作为第二道防线发挥作用。这些发现还表明,在这些情况下蛋白质-GSH混合二硫键的形成可能起保护作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验