Suppr超能文献

人类运动建模:在自行车运动中的应用。

Modelling human locomotion: applications to cycling.

作者信息

Olds T

机构信息

School of Physical Education, Exercise and Sport Studies, University of South Australia, Adelaide, Australia.

出版信息

Sports Med. 2001;31(7):497-509. doi: 10.2165/00007256-200131070-00005.

Abstract

Mathematical models of performance in locomotor sports are reducible to functions of the sort y = f(x) where y is some performance variable, such as time, distance or speed, and x is a combination of predictor variables which may include expressions for power (or energy) supply and/or demand. The most valid and useful models are first-principles models that equate expressions for power supply and power demand. Power demand in cycling is the sum of the power required to overcome air resistance and rolling resistance, the power required to change the kinetic energy of the system, and the power required to ride up or down a grade. Power supply is drawn from aerobic and anaerobic sources, and modellers must consider not only the rate but also the kinetics and pattern of power supply. The relative contributions of air resistance to total demand, and of aerobic energy to total supply, increase curvilinearly with performance time, while the importance of other factors decreases. Factors such as crosswinds, aerodynamic accessories and drafting can modify the power demand in cycling, while body configuration/orientation and altitude will affect both power demand and power supply, often in opposite directions. Mathematical models have been used to solve specific problems in cycling, such as the chance of success of a breakaway, the optimal altitude for performance, creating a 'level playing field' to compare performances for selection purposes, and to quantify, in the common currency of minutes and seconds, the effects on performance of changes in physiological, environmental and equipment variables. The development of crank dynamometers and portable gas-analysis systems, combined with a modelling approach, will in the future provide valuable information on the effect of changes in equipment, configuration and environment on both supply and demand-side variables.

摘要

田径运动成绩的数学模型可简化为y = f(x)这类函数,其中y是某个成绩变量,如时间、距离或速度,而x是预测变量的组合,可能包括功率(或能量)供应和/或需求的表达式。最有效且有用的模型是将功率供应和功率需求的表达式等同起来的第一性原理模型。自行车运动中的功率需求是克服空气阻力和滚动阻力所需的功率、改变系统动能所需的功率以及爬坡或下坡所需的功率之和。功率供应来自有氧和无氧来源,建模者不仅要考虑供应速率,还要考虑功率供应的动力学和模式。空气阻力对总需求的相对贡献以及有氧能量对总供应的相对贡献会随着成绩时间呈曲线增加,而其他因素的重要性则会降低。诸如侧风、空气动力学附件和尾随骑行等因素会改变自行车运动中的功率需求,而身体形态/姿势和海拔高度通常会以相反的方向影响功率需求和功率供应。数学模型已被用于解决自行车运动中的特定问题,例如突围成功的几率、最佳成绩海拔高度、创造一个“公平竞争环境”以便为选拔目的比较成绩,以及用分和秒这一通用单位来量化生理、环境和设备变量变化对成绩的影响。曲柄测力计和便携式气体分析系统的发展,再结合建模方法,未来将提供有关设备、形态和环境变化对供应侧和需求侧变量影响的有价值信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验