Suppr超能文献

在全身间接热量计中对低水平和高水平体力活动下的能量消耗进行预测。

Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.

作者信息

de Jonge L, Nguyen T, Smith S R, Zachwieja J J, Roy H J, Bray G A

机构信息

Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808-4124, USA.

出版信息

Int J Obes Relat Metab Disord. 2001 Jul;25(7):929-34. doi: 10.1038/sj.ijo.0801656.

Abstract

OBJECTIVES

In studies that involve the use of a room calorimeter, 24 h energy intake is often larger than 24 h energy expenditure (24 h EE) because of a decrease in activity energy expenditure due to the confined space. This positive energy balance can have large consequences for the interpretation of substrate balances. The objective of this study was to develop a method for predicting an individual's 24 h EE in a room calorimeter at both low (1.4xRMR) and high (1.8xRMR) levels of physical activity.

METHODS

Two methods are presented that predict an individual's 24 h EE in a metabolic chamber. The first method was based on three components: (1) a 30 min measurement of resting metabolic rate (RMR) using a ventilated hood system; (2) measurement of exercise energy expenditure during 10 min of treadmill walking; and (3) estimation of free-living energy expenditure using a tri-axial motion sensor. Using these measurements we calculated the amount of treadmill time needed for each individual in order to obtain a total 24 h EE at either a low (1.4xRMR) or a high (1.8xRMR) level of physical activity. We also developed a method to predict total 24 h EE during the chamber stay by using the energy expenditure values for the different levels of activity as measured during the hours already spent in the chamber. This would provide us with a tool to adjust the exercise time and/or energy intake during the chamber stay.

RESULTS

Method 1: there was no significant difference in expected and measured 24 h EE under either low (9.35+/-0.56 vs 9.51+/-0.47 MJ/day; measured vs predicted) or high activity conditions (13.41+/-0.74 vs 13.97+/-0.78 MJ/day; measured vs predicted). Method 2: the developed algorithm predicted 24 h EE for 97.6+/-4.0% of the final value at 3 h into the test day, and for 98.6+/-3.7% at 7 h into the test day.

CONCLUSION

Both methods provide accurate prediction of energy expenditure in a room calorimeter at both high and low levels of physical activity. It equally shows that it is possible to accurately predict total 24 h EE from energy expenditure values obtained at 3 and 7 h into the study.

摘要

目的

在涉及使用房间热量计的研究中,由于受限空间导致活动能量消耗减少,24小时能量摄入量通常大于24小时能量消耗(24小时EE)。这种正能量平衡可能会对底物平衡的解释产生重大影响。本研究的目的是开发一种方法,用于预测个体在房间热量计中处于低(1.4x静息代谢率)和高(1.8x静息代谢率)身体活动水平时的24小时EE。

方法

提出了两种预测个体在代谢室中24小时EE的方法。第一种方法基于三个组成部分:(1)使用通风罩系统测量30分钟的静息代谢率(RMR);(2)测量跑步机步行10分钟期间的运动能量消耗;(3)使用三轴运动传感器估计自由生活能量消耗。利用这些测量结果,我们计算了每个个体为了在低(1.4xRMR)或高(1.8xRMR)身体活动水平下获得24小时总EE所需的跑步机时间。我们还开发了一种方法,通过使用在代谢室中已度过的小时数测量的不同活动水平的能量消耗值来预测在代谢室停留期间的24小时总EE。这将为我们提供一种在代谢室停留期间调整运动时间和/或能量摄入的工具。

结果

方法1:在低(9.35±0.56 vs 9.51±0.47兆焦/天;测量值vs预测值)或高活动条件下(13.41±0.74 vs 13.97±0.78兆焦/天;测量值vs预测值),预期和测量的24小时EE之间没有显著差异。方法2:所开发的算法在测试日3小时时预测的24小时EE为最终值的97.6±4.0%,在测试日7小时时为98.6±3.7%。

结论

两种方法都能准确预测房间热量计在高、低身体活动水平下的能量消耗。这同样表明,从研究开始3小时和7小时获得的能量消耗值可以准确预测24小时总EE。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验