Weber S, Möbius K, Richter G, Kay C W
Institute of Experimental Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany.
J Am Chem Soc. 2001 Apr 25;123(16):3790-8. doi: 10.1021/ja003426m.
Density functional theory is used to calculate the electronic structure of the neutral flavin radical, FADH(), formed in the light-induced electron-transfer reaction of DNA repair in cis,syn-cyclobutane pyrimidine dimer photolyases. Using the hybrid B3LYP functional together with the double-zeta basis set EPR-II, (1)H, (13)C, (15)N, and (17)O isotropic and anisotropic hyperfine couplings are calculated and explained by reference to the electron densities of the highest occupied molecular orbital and of the unpaired spin distribution on the radical. Comparison of calculated and experimental hyperfine couplings obtained from EPR and ENDOR/TRIPLE resonance leads to a refined structure for the FAD cofactor in Escherichia coli DNA photolyase. Hydrogen bonding at N3H, O4, and N5H results in significant changes in the unpaired spin density distribution and hyperfine coupling constants. The calculated electronic structure of FADH() provides evidence for a superexchange-mediated electron transfer between the cyclobutane pyrimidine dimer lesion and the 7,8-dimethyl isoalloxazine moiety of the flavin cofactor via the adenine moiety.
密度泛函理论用于计算在顺式、顺式 - 环丁烷嘧啶二聚体光解酶的光诱导DNA修复电子转移反应中形成的中性黄素自由基FADH()的电子结构。使用杂化B3LYP泛函结合双ζ基组EPR-II,计算(1)H、(13)C、(15)N和(17)O的各向同性和各向异性超精细耦合,并通过参考最高占据分子轨道的电子密度和自由基上未配对自旋分布来解释。通过EPR和ENDOR/TRIPLE共振获得的计算超精细耦合与实验超精细耦合的比较,得出了大肠杆菌DNA光解酶中FAD辅因子的精细结构。N3H、O4和N5H处的氢键导致未配对自旋密度分布和超精细耦合常数发生显著变化。FADH()的计算电子结构为环丁烷嘧啶二聚体损伤与黄素辅因子的7,8 - 二甲基异咯嗪部分之间通过腺嘌呤部分进行的超交换介导的电子转移提供了证据。