Kozyreff G, Vladimirov A G, Mandel P
Optique Nonlinéaire Théorique, Université Libre de Bruxelles, Campus Plaine CP 231, B-1050 Bruxelles, Belgium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 2):016613. doi: 10.1103/PhysRevE.64.016613. Epub 2001 Jun 26.
We study the dynamics of an array of single mode semiconductor lasers globally but weakly coupled by a common external feedback mirror and by nearest neighbor interactions. We seek to determine the conditions under which all lasers of the array are in phase, whether in a steady, periodic, quasiperiodic, or chaotic regime, in order to maximize the output far field intensity. We show that the delay may be a useful control parameter to achieve in-phase synchronization. For the in-phase steady state, there is a competition between a delay-induced Hopf bifurcation leading to an in-phase periodic regime and a delay-independent Hopf bifurcation leading to an antiphased periodic regime. Both regimes are described analytically and secondary Hopf bifurcations to quasiperiodic solutions are found. Close to the stable steady state, the array is described by a set of Kuramoto equations for the phases of the fields. Above the first Hopf bifurcation, these equations are generalized by the addition of second and third order time derivatives of the phases.
我们研究了由一个公共外部反馈镜和最近邻相互作用全局但弱耦合的单模半导体激光器阵列的动力学。我们试图确定阵列中所有激光器同相的条件,无论处于稳态、周期态、准周期态还是混沌态,以便最大化输出远场强度。我们表明,延迟可能是实现同相同步的一个有用控制参数。对于同相稳态,存在一个导致同相周期态的延迟诱导霍普夫分岔和一个导致反相周期态的与延迟无关的霍普夫分岔之间的竞争。这两种状态都通过解析方法进行了描述,并发现了到准周期解的二级霍普夫分岔。在接近稳定稳态时,阵列由一组关于场相位的Kuramoto方程描述。在第一次霍普夫分岔之上,通过添加相位的二阶和三阶时间导数对这些方程进行了推广。