Suppr超能文献

用于截瘫患者功能性电刺激行走的实时步态事件检测

Real-time gait event detection for paraplegic FES walking.

作者信息

Skelly M M, Chizeck H J

机构信息

Motion Study Laboratory, Cleveland, OH, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2001 Mar;9(1):59-68. doi: 10.1109/7333.918277.

Abstract

A real-time method for the detection of gait events that occur during the electrically stimulated locomotion of paraplegic subjects is described. It consists of a two-level algorithm for the processing of sensor signals and the determination of gait event times. Sensor signals and information about the progression of the stimulator though its pre-specified stimulation "pattern" are processed by a machine intelligence (fuzzy logic) algorithm to determine an initial estimate of the patient's current phase of gait. This is then reviewed and modified by a second algorithm that removes spurious gait estimates, and determines gait event times. These gait event times are known to the system within approximately one-half of a gait cycle. The resulting gait event detection system was successfully evaluated on three subjects. Detection accuracy is not adversely affected by day-to-day gait variability. This work resolved technical and practical issues that previously limited the real time application of these methods. In particular, cosmetically acceptable insole force transducers were used. This gait event detector is designed for use in a real time controller for the automatic adjustment of the intensity and timing of stimulation while the subject is walking using functional electrical stimulation (FES).

摘要

本文描述了一种用于检测截瘫患者电刺激运动过程中发生的步态事件的实时方法。它由一个用于处理传感器信号和确定步态事件时间的两级算法组成。传感器信号以及关于刺激器按照其预先指定的刺激“模式”进行的进程的信息,由机器智能(模糊逻辑)算法进行处理,以确定患者当前步态阶段的初始估计值。然后,该估计值由第二种算法进行审查和修正,该算法去除虚假的步态估计,并确定步态事件时间。这些步态事件时间在大约半个步态周期内为系统所知。所得的步态事件检测系统已在三名受试者身上成功进行了评估。检测准确性不受日常步态变异性的不利影响。这项工作解决了以前限制这些方法实时应用的技术和实际问题。特别是,使用了外观上可接受的鞋垫式力传感器。这种步态事件检测器设计用于实时控制器,以便在受试者使用功能性电刺激(FES)行走时自动调整刺激的强度和时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验