Zurek W H
Theory Division, T-6, MS B288, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Nature. 2001 Aug 16;412(6848):712-7. doi: 10.1038/35089017.
Heisenberg's principle states that the product of uncertainties of position and momentum should be no less than the limit set by Planck's constant, Planck's over 2pi/2. This is usually taken to imply that phase space structures associated with sub-Planck scales (<<Planck's over 2pi) do not exist, or at least that they do not matter. Here I show that this common assumption is false: non-local quantum superpositions (or 'Schrödinger's cat' states) that are confined to a phase space volume characterized by the classical action A, much larger than Planck's over 2pi, develop spotty structure on the sub-Planck scale, a = Planck's over 2pi2/A. Structure saturates on this scale particularly quickly in quantum versions of classically chaotic systems-such as gases that are modelled by chaotic scattering of molecules-because their exponential sensitivity to perturbations causes them to be driven into non-local 'cat' states. Most importantly, these sub-Planck scales are physically significant: a determines the sensitivity of a quantum system or environment to perturbations. Therefore, this scale controls the effectiveness of decoherence and the selection of preferred pointer states by the environment. It will also be relevant in setting limits on the sensitivity of quantum meters.
海森堡原理表明,位置和动量的不确定性乘积应不小于普朗克常数(普朗克常数除以2π)所设定的极限。这通常被认为意味着与亚普朗克尺度(远小于普朗克常数除以2π)相关的相空间结构不存在,或者至少它们无关紧要。在此我表明这个常见假设是错误的:局限于由经典作用量A所表征的相空间体积内的非局域量子叠加态(或“薛定谔猫”态),其A远大于普朗克常数除以2π,会在亚普朗克尺度a = 普朗克常数除以(2π)²/A上形成斑点状结构。在经典混沌系统的量子版本中,比如由分子的混沌散射所建模的气体,这种结构在这个尺度上饱和得特别快,因为它们对微扰的指数敏感性会使它们被驱动到非局域的“猫”态。最重要的是,这些亚普朗克尺度具有物理意义:a决定了量子系统或环境对微扰的敏感性。因此,这个尺度控制着退相干的有效性以及环境对优先指针态的选择。它在设定量子测量仪的灵敏度极限方面也将具有相关性。