Ben-Ari Y
Institut de Neurobiologie de la Méditerranée (INMED), INSERM U29, Route de Luminy, 13273 Marseille, France.
Epilepsia. 2001;42 Suppl 3:5-7. doi: 10.1046/j.1528-1157.2001.042suppl.3005.x.
The events that follow epilepsy seizures are not restricted to the immediate period. A series of long-term alterations occurs, including synaptic rearrangements, which have an impact on the brain circuit's mode of operation. With models of temporal lobe epilepsy, seizures have been shown to generate long-lasting changes in synaptic efficacy (epileptic long-term potentiation) because of removal of the magnesium block, activation of N-methyl-D-aspartate receptors, and an increase in intracellular calcium. This novel form of synaptic plasticity provides a link between memory effects and pathologic processes. Additionally, high-affinity kainate autoradiography, Timm stain, intraventricular injection of kainic acid, and 3D reconstruction experiments clearly indicate that even brief seizures produce changes in synaptic efficacy, followed 2-3 weeks later by aberrant neosynapse formation. Several key steps have been identified in the cascade leading from transient hyperactivity episodes to long-lasting, quasi-permanent modification of the neuronal circuit organization. These include the activation of immediate-early genes, activation of growth factor genes within hours, alterations in glutamate receptors, glial hypertrophy, and cytoskeletal protein changes. The cascade is activated by the increase in intracellular calcium and leads to axonal growth and neosynapse formation, which in turn participates in the etiology of the syndrome by reducing the threshold for further seizures. In summary, study data imply that the mature epileptic circuit has unique features in comparison with those present before a seizure episode, including new receptors, ionic channels, and other proteins. It is therefore essential to develop novel strategies based on the unique mode of operation of the mature epileptic circuit, rather than on acute models of epilepsy.
癫痫发作之后发生的事件并不局限于发作刚结束的这段时间。会出现一系列长期变化,包括突触重排,这会影响脑回路的运作模式。在颞叶癫痫模型中,由于镁离子阻断作用的消除、N-甲基-D-天冬氨酸受体的激活以及细胞内钙的增加,癫痫发作已被证明会在突触效能方面产生持久变化(癫痫性长时程增强)。这种新型的突触可塑性在记忆效应和病理过程之间建立了联系。此外,高亲和力的红藻氨酸放射自显影、Timm染色、脑室内注射红藻氨酸以及三维重建实验清楚地表明,即使是短暂的癫痫发作也会引起突触效能的变化,2至3周后会出现异常的新突触形成。在从短暂的活动过度发作到神经元回路组织的持久、近乎永久性改变的级联反应中,已经确定了几个关键步骤。这些步骤包括立即早期基因的激活、数小时内生长因子基因的激活、谷氨酸受体的改变、胶质细胞肥大以及细胞骨架蛋白的变化。该级联反应由细胞内钙的增加激活,并导致轴突生长和新突触形成,这反过来又通过降低进一步癫痫发作的阈值而参与该综合征的病因学过程。总之,研究数据表明,与癫痫发作前相比,成熟的癫痫回路具有独特的特征,包括新的受体、离子通道和其他蛋白质。因此,至关重要的是要基于成熟癫痫回路独特的运作模式来开发新策略,而不是基于急性癫痫模型。