Suppr超能文献

药代动力学数据建模中的一些统计学问题。

Some statistical issues in modelling pharmacokinetic data.

作者信息

Lindsey J K, Jones B, Jarvis P

机构信息

Biostatistics, Limburgs University, Belgium.

出版信息

Stat Med. 2001;20(17-18):2775-83. doi: 10.1002/sim.742.

Abstract

A fundamental assumption underlying pharmacokinetic compartment modelling is that each subject has a different individual curve. To some extent this runs counter to the statistical principle that similar individuals will have similar curves, thus making inferences to a wider population possible. In population pharmacokinetics, the compromise is to use random effects. We recommend that such models also be used in data rich situations instead of independently fitting individual curves. However, the additional information available in such studies shows that random effects are often not sufficient; generally, an autoregressive process is also required. This has the added advantage that it provides a means of tracking each individual, yielding predictions for the next observation. The compartment model curve being fitted may also be distorted in other ways. A widely held assumption is that most, if not all, pharmacokinetic concentration data follow a log-normal distribution. By examples, we show that this is not generally true, with the gamma distribution often being more suitable. When extreme individuals are present, a heavy-tailed distribution, such as the log Cauchy, can often provide more robust results. Finally, other assumptions that can distort the results include a direct dependence of the variance, or other dispersion parameter, on the mean and setting non-detectable values to some arbitrarily small value instead of treating them as censored. By pointing out these problems with standard methods of statistical modelling of pharmacokinetic data, we hope that commercial software will soon make more flexible and suitable models available.

摘要

药代动力学房室模型的一个基本假设是每个受试者都有不同的个体曲线。在某种程度上,这与统计学原理相悖,统计学原理认为相似个体将有相似曲线,从而使得能够对更广泛的人群进行推断。在群体药代动力学中,折中的办法是使用随机效应。我们建议在数据丰富的情况下也使用这类模型,而不是独立拟合个体曲线。然而,这类研究中可用的额外信息表明,随机效应往往并不充分;通常,还需要一个自回归过程。这还有一个额外的优势,即它提供了一种追踪每个个体的方法,能够对下一次观察进行预测。正在拟合的房室模型曲线也可能以其他方式失真。一个广泛持有的假设是,大多数(如果不是全部)药代动力学浓度数据遵循对数正态分布。通过实例,我们表明情况通常并非如此,伽马分布往往更合适。当存在极端个体时,重尾分布,如对数柯西分布,通常能提供更稳健的结果。最后,其他可能使结果失真的假设包括方差或其他离散参数直接依赖于均值,以及将未检测到的值设定为某个任意小的值,而不是将它们视为删失值。通过指出药代动力学数据统计建模标准方法中的这些问题,我们希望商业软件很快能提供更灵活、更合适的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验