Suppr超能文献

都柏林念珠菌生物膜的形成

Biofilm formation by Candida dubliniensis.

作者信息

Ramage G, Vande Walle K, Wickes B L, López-Ribot J L

机构信息

Department of Microbiology, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA.

出版信息

J Clin Microbiol. 2001 Sep;39(9):3234-40. doi: 10.1128/JCM.39.9.3234-3240.2001.

Abstract

Candida dubliniensis is an opportunistic yeast closely related to Candida albicans that has been recently implicated in oropharyngeal candidiasis in human immunodeficiency virus-infected patients. Most manifestations of candidiasis are associated with biofilm formation, with cells in biofilms displaying properties dramatically different from free-living cells grown under normal laboratory conditions. Here, we report on the development of in vitro models of C. dubliniensis biofilms on the surfaces of biomaterials (polystyrene and acrylic) and on the characteristics associated with biofilm formation by this newly described species. Time course analysis using a formazan salt reduction assay to monitor metabolic activities of cells within the biofilm, together with microscopy studies, revealed that biofilm formation by C. dubliniensis occurred after initial focal adherence, followed by growth, proliferation, and maturation over 24 to 48 h. Serum and saliva preconditioning films enhanced the initial attachment of C. dubliniensis and subsequent biofilm formation. Scanning electron microscopy and confocal scanning laser microscopy were used to further characterize C. dubliniensis biofilms. Mature C. dubliniensis biofilms consisted of a dense network of yeasts cells and hyphal elements embedded within exopolymeric material. C. dubliniensis biofilms displayed spatial heterogeneity and an architecture showing microcolonies with ramifying water channels. Antifungal susceptibility testing demonstrated the increased resistance of sessile C. dubliniensis cells, including the type strain and eight different clinical isolates, against fluconazole and amphotericin B compared to their planktonic counterparts. C. dubliniensis biofilm formation may allow this species to maintain its ecological niche as a commensal and during infection with important clinical repercussions.

摘要

都柏林念珠菌是一种与白色念珠菌密切相关的机会性酵母,最近被认为与人类免疫缺陷病毒感染患者的口腔念珠菌病有关。念珠菌病的大多数表现都与生物膜形成有关,生物膜中的细胞表现出与在正常实验室条件下生长的游离细胞截然不同的特性。在此,我们报告了都柏林念珠菌在生物材料(聚苯乙烯和丙烯酸)表面形成生物膜的体外模型的建立以及该新描述物种生物膜形成相关的特征。使用甲臜盐还原试验监测生物膜内细胞代谢活性的时间进程分析以及显微镜研究表明,都柏林念珠菌的生物膜形成在最初的局部黏附之后发生,随后在24至48小时内生长、增殖并成熟。血清和唾液预处理膜增强了都柏林念珠菌的初始黏附及随后的生物膜形成。扫描电子显微镜和共聚焦扫描激光显微镜被用于进一步表征都柏林念珠菌生物膜。成熟的都柏林念珠菌生物膜由嵌入胞外聚合物材料中的酵母细胞和菌丝成分的致密网络组成。都柏林念珠菌生物膜表现出空间异质性和一种显示有分支水通道的微菌落的结构。抗真菌药敏试验表明,与浮游状态的对应细胞相比,固着状态的都柏林念珠菌细胞(包括模式菌株和8种不同的临床分离株)对氟康唑和两性霉素B的耐药性增加。都柏林念珠菌生物膜的形成可能使该物种作为共生菌维持其生态位,并在感染期间产生重要的临床影响。

相似文献

1
Biofilm formation by Candida dubliniensis.
J Clin Microbiol. 2001 Sep;39(9):3234-40. doi: 10.1128/JCM.39.9.3234-3240.2001.
2
Characteristics of biofilm formation by Candida albicans.
Rev Iberoam Micol. 2001 Dec;18(4):163-70.
3
Variation in biofilm formation among blood and oral isolates of Candida albicans and Candida dubliniensis.
Enferm Infecc Microbiol Clin. 2011 Nov;29(9):660-5. doi: 10.1016/j.eimc.2011.06.009. Epub 2011 Sep 6.
6
Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species.
J Med Microbiol. 2010 Oct;59(Pt 10):1225-1234. doi: 10.1099/jmm.0.021832-0. Epub 2010 Jun 24.
7
Growth competition between Candida dubliniensis and Candida albicans under broth and biofilm growing conditions.
J Clin Microbiol. 2000 Feb;38(2):902-4. doi: 10.1128/JCM.38.2.902-904.2000.
8
In vitro effects of micafungin against Candida biofilms on polystyrene and central venous catheter sections.
Int J Antimicrob Agents. 2006 Dec;28(6):568-73. doi: 10.1016/j.ijantimicag.2006.07.024. Epub 2006 Nov 13.

引用本文的文献

1
Speciation analysis of fungi by liquid atmospheric pressure MALDI mass spectrometry.
Anal Bioanal Chem. 2025 Sep 5. doi: 10.1007/s00216-025-06094-6.
2
Exploring the Biology, Virulence, and General Aspects of .
Infect Drug Resist. 2024 Dec 21;17:5755-5773. doi: 10.2147/IDR.S497862. eCollection 2024.
3
Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26.
PLoS Biol. 2024 Jun 21;22(6):e3002693. doi: 10.1371/journal.pbio.3002693. eCollection 2024 Jun.
4
Recent progress in carbon dots for anti-pathogen applications in oral cavity.
Front Cell Infect Microbiol. 2023 Sep 15;13:1251309. doi: 10.3389/fcimb.2023.1251309. eCollection 2023.
5
Biofilm: The invisible culprit in catheter-induced candidemia.
AIMS Microbiol. 2023 May 11;9(3):467-485. doi: 10.3934/microbiol.2023025. eCollection 2023.
8
The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections.
Front Microbiol. 2022 May 26;13:787119. doi: 10.3389/fmicb.2022.787119. eCollection 2022.
9
The Persistent Challenge of Pneumocystis Growth Outside the Mammalian Lung: Past and Future Approaches.
Front Microbiol. 2021 May 20;12:681474. doi: 10.3389/fmicb.2021.681474. eCollection 2021.

本文引用的文献

2
Riddle of biofilm resistance.
Antimicrob Agents Chemother. 2001 Apr;45(4):999-1007. doi: 10.1128/AAC.45.4.999-1007.2001.
3
Comparison of the hydrophobic properties of Candida albicans and Candida dubliniensis.
Infect Immun. 2001 Feb;69(2):779-86. doi: 10.1128/IAI.69.2.779-786.2001.
4
In vitro susceptibility of Candida dubliniensis to current and new antifungal agents.
Chemotherapy. 2000 Nov-Dec;46(6):395-401. doi: 10.1159/000007320.
5
Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents.
J Antimicrob Chemother. 2000 Sep;46(3):397-403. doi: 10.1093/jac/46.3.397.
7
Effect of serum concentration on Candida biofilm formation on acrylic surfaces.
Mycoses. 2000;43(3-4):139-43. doi: 10.1046/j.1439-0507.2000.00564.x.
10
Biofilm, city of microbes.
J Bacteriol. 2000 May;182(10):2675-9. doi: 10.1128/JB.182.10.2675-2679.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验