Suppr超能文献

随机建模与预测斯普拉格-道利大鼠的实验性癫痫发作

Stochastic modeling and prediction of experimental seizures in Sprague-Dawley rats.

作者信息

Sunderam S, Osorio I, Frei And M G, Watkins J F

机构信息

Flint Hills Scientific L.L.C., Lawrence, Kansas 66160, USA.

出版信息

J Clin Neurophysiol. 2001 May;18(3):275-82. doi: 10.1097/00004691-200105000-00007.

Abstract

Most seizure prediction methods are based on nonlinear dynamic techniques, which are highly computationally expensive, thus limiting their clinical usefulness. The authors propose a different approach for prediction that uses a stochastic Markov chain model. Seizure (Ts) and interictal (Ti) durations were measured from 11 rats treated with 3-mercaptopropionic acid. The duration of a seizure Ts was used to predict the time (Ti2) to the next one. Ts and Ti were distributed bimodally into short (S) and long (L), generating four probable transitions: S --> S, S --> L, L --> S, and L --> L. The joint probability density f (Ts, Ti2) was modeled, and was used to predict Ti2 given Ts. An identical model predicted Ts given the duration Ti1 of the preceding interictal interval. The median prediction error was 3.0 +/- 3.5 seconds for Ts (given Ti1) and 6.5 +/- 2.0 seconds for Ti2 (given Ts). In comparison, ranges for observed values were 2.3 seconds < Ts < 120 seconds and 6.6 seconds < Ti < 782 seconds. These results suggest that stochastic models are potentially useful tools for the prediction of seizures. Further investigation of the probable temporal interdependence between the ictal and interictal states may provide valuable insight into the dynamics of the epileptic brain.

摘要

大多数癫痫发作预测方法基于非线性动力学技术,这些技术计算成本高昂,因此限制了它们的临床实用性。作者提出了一种不同的预测方法,该方法使用随机马尔可夫链模型。从11只接受3-巯基丙酸治疗的大鼠身上测量了癫痫发作(Ts)和发作间期(Ti)的持续时间。癫痫发作的持续时间Ts被用来预测到下一次发作的时间(Ti2)。Ts和Ti呈双峰分布,分为短(S)和长(L),产生四种可能的转变:S→S、S→L、L→S和L→L。对联合概率密度f(Ts,Ti2)进行建模,并用于在已知Ts的情况下预测Ti2。一个相同的模型在已知前一个发作间期间隔的持续时间Ti1的情况下预测Ts。对于Ts(已知Ti1),中位数预测误差为3.0±3.5秒,对于Ti2(已知Ts),中位数预测误差为6.5±2.0秒。相比之下,观察值的范围为2.3秒<Ts<120秒和6.6秒<Ti<782秒。这些结果表明,随机模型可能是预测癫痫发作的有用工具。对发作期和发作间期状态之间可能的时间依赖性进行进一步研究,可能会为癫痫大脑的动力学提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验