Suppr超能文献

在1g重力、微重力和回转器条件下对白三叶草(白车轴草)生长过程中平衡石质量和聚集的调节

Modulation of statolith mass and grouping in white clover (Trifolium repens) growth in 1-g, microgravity and on the clinostat.

作者信息

Smith J D, Todd P, Staehelin L A

机构信息

Department of Aerospace Engineering Sciences, University of Colorado, Boulder, USA.

出版信息

Plant J. 1997 Dec;12(6):1361-73. doi: 10.1046/j.1365-313x.1997.12061361.x.

Abstract

Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume, number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration.

摘要

当前高等植物重力感知模型聚焦于充满淀粉的造粉体的浮力重量,将其视为初始重力信号感受器(平衡石)。然而,尚无测试确定平衡石质量是否受到调节,以增加或减少对植物的重力刺激。为此,研究了在三种重力环境下生长的白三叶草(Trifolium repens)的根冠,这三种重力环境具有三种不同水平的重力刺激:(i)正常静态重力刺激的1g对照,(ii)在缓慢回转器上进行恒定重力刺激,以及(iii)在航天飞机上无刺激的微重力环境中。幼苗在生物服务流体处理装置中萌发并生长,在光学和电子显微镜水平上检查根冠结构,包括从连续切片进行三维细胞重建。电子显微镜照片的定量分析表明,造粉体的淀粉含量随幼苗年龄变化,但不受重力条件影响。还发现,与淀粉储存造粉体不同,平衡石造粉体的所有淀粉颗粒都被一层细的丝状、不含核糖体的基质包围。从光学显微镜三维细胞重建来看,造粉体之间的绝对体积、数量和位置关系表明:(i)在微重力环境下单个造粉体体积增加,但在回转器上生长长达三天的幼苗中保持恒定;(ii)微重力环境下每个细胞的造粉体数量保持不变,但在回转器上减少;(iii)造粉体的三维位置并非随机分布。相反,微重力环境下的造粉体聚集在细胞中心附近,而回转器上的造粉体则显得更为分散。综合这些观察结果表明,改变重力刺激可以通过改变造粉体的大小、数量和聚集方式,引发对平衡石质量的反馈控制。这些结果支持了高等植物重力感知的淀粉 - 平衡石理论,并通过一个新的反馈控制回路为当前模型增添了一种机制,用于调节平衡石对惯性加速度的响应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验