Suppr超能文献

植物和真菌中的重力感应

Gravisensing in plants and fungi.

作者信息

Hasenstein K H

机构信息

Biology Department, University of SW Louisiana, Lafayette 70504-2451, USA.

出版信息

Adv Space Res. 1999;24(6):677-85. doi: 10.1016/s0273-1177(99)00399-3.

Abstract

The principle of establishing and maintaining a gravitropic set point angle depends on gravisensing and a subsequent cascade of events that result in differential elongation of the responsive structures. Since gravity acts upon masses, the gravisensing mechanisms of all biological systems must follow the same principle, namely the sensing of some force due to differential acceleration of the perceiving entity and a reference structure. This presentation will demonstrate that gravisensing can be accomplished by various means, ranging from cytoskeletal organization, mechano-elastic stress to perturbation of electric signals. However, several arguments indicate that sedimentation of either dense plastids (statoliths), the entire protoplast, or a combination of these represents the primary step in graviperception in plants. In fungi, nuclei and cytoskeletal proteins are believed to form a network capable of gravisensing but sedimenting organelles that may function as statoliths have been identified. Theoretical and practical limitations of gravisensing and detection of acceleration forces necessitate microgravity experiments to identify the primary perceptor, subsequent biochemical mechano-transduction, and biological response processes.

摘要

建立和维持重力感应设定点角度的原理取决于重力感应以及随后一系列导致响应结构差异伸长的事件。由于重力作用于质量,所有生物系统的重力感应机制都必须遵循相同的原理,即感知由于感知实体和参考结构的差异加速度而产生的某种力。本报告将证明,重力感应可以通过多种方式实现,从细胞骨架组织、机械弹性应力到电信号的扰动。然而,有几个观点表明,致密质体(平衡石)、整个原生质体或它们的组合的沉降是植物重力感知的首要步骤。在真菌中,细胞核和细胞骨架蛋白被认为形成了一个能够进行重力感应的网络,但已经鉴定出可能作为平衡石起作用的沉降细胞器。重力感应和加速力检测的理论和实际限制使得有必要进行微重力实验,以确定主要感受器、随后的生化机械转导以及生物反应过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验