Taylor D J, Kupper L L, Rappaport S M, Lyles R H
Family Health International, Durham, North Carolina 27713, USA.
Biometrics. 2001 Sep;57(3):681-8. doi: 10.1111/j.0006-341x.2001.00681.x.
Information from detectable exposure measurements randomly sampled from a left-truncated log-normal distribution may be used to evaluate the distribution of nondetectable values that fall below an analytic limit of detection. If the proportion of nondetects is larger than expected under log normality, alternative models to account for these unobserved data should be considered. We discuss one such model that incorporates a mixture of true zero exposures and a log-normal distribution with possible left censoring, previously considered in a different context by Moulton and Halsey (1995, Biometrics 51, 1570-1578). A particular relationship is demonstrated between maximum likelihood parameter estimates based on this mixture model and those assuming either left-truncated or left-censored data. These results emphasize the need for caution when choosing a model to fit data involving nondetectable values. A one-sided likelihood ratio test for comparing mean exposure under the mixture model to an occupational exposure limit is then developed and evaluated via simulations. An example demonstrates the potential impact of specifying an incorrect model for the nondetectable values.
从左截断对数正态分布中随机抽取的可检测暴露测量值信息,可用于评估低于分析检测限的不可检测值的分布情况。如果未检测值的比例大于对数正态分布下的预期比例,则应考虑使用替代模型来处理这些未观测到的数据。我们讨论了一种这样的模型,该模型包含真实零暴露的混合以及可能存在左删失的对数正态分布,Moulton和Halsey(1995年,《生物统计学》51卷,第1570 - 1578页)曾在不同背景下考虑过该模型。基于此混合模型的最大似然参数估计值与假设为左截断或左删失数据的估计值之间呈现出一种特定关系。这些结果强调了在选择适合包含不可检测值数据的模型时需谨慎的必要性。然后开发了一种单侧似然比检验,用于比较混合模型下的平均暴露与职业暴露限值,并通过模拟进行评估。一个示例展示了为不可检测值指定错误模型的潜在影响。