Suppr超能文献

酪氨酸羟化酶被过氧亚硝酸盐硝化并失活。

Nitration and inactivation of tyrosine hydroxylase by peroxynitrite.

作者信息

Blanchard-Fillion B, Souza J M, Friel T, Jiang G C, Vrana K, Sharov V, Barrón L, Schöneich C, Quijano C, Alvarez B, Radi R, Przedborski S, Fernando G S, Horwitz J, Ischiropoulos H

机构信息

Stokes Research Institute and Department of Biochemistry and Biophysics, Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Biol Chem. 2001 Dec 7;276(49):46017-23. doi: 10.1074/jbc.M105564200. Epub 2001 Oct 5.

Abstract

Tyrosine hydroxylase (TH) is modified by nitration after exposure of mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydrophenylpyridine. The temporal association of tyrosine nitration with inactivation of TH activity in vitro suggests that this covalent post-translational modification is responsible for the in vivo loss of TH function (Ara, J., Przedborski, S., Naini, A. B., Jackson-Lewis, V., Trifiletti, R. R., Horwitz, J., and Ischiropoulos, H. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7659-7663). Recent data showed that cysteine oxidation rather than tyrosine nitration is responsible for TH inactivation after peroxynitrite exposure in vitro (Kuhn, D. M., Aretha, C. W., and Geddes, T. J. (1999) J. Neurosci. 19, 10289-10294). However, re-examination of the reaction of peroxynitrite with purified TH failed to produce cysteine oxidation but resulted in a concentration-dependent increase in tyrosine nitration and inactivation. Cysteine oxidation is only observed after partial unfolding of the protein. Tyrosine residue 423 and to lesser extent tyrosine residues 428 and 432 are modified by nitration. Mutation of Tyr(423) to Phe resulted in decreased nitration as compared with wild type protein without loss of activity. Stopped-flow experiments reveal a second order rate constant of (3.8 +/- 0.9) x 10(3) m(-1) s(-1) at pH 7.4 and 25 degrees C for the reaction of peroxynitrite with TH. Collectively, the data indicate that peroxynitrite reacts with the metal center of the protein and results primarily in the nitration of tyrosine residue 423, which is responsible for the inactivation of TH.

摘要

将小鼠暴露于1-甲基-4-苯基-1,2,3,6-四氢吡啶后,酪氨酸羟化酶(TH)会发生硝化修饰。酪氨酸硝化与TH活性在体外失活的时间关联表明,这种共价翻译后修饰是TH在体内功能丧失的原因(阿拉,J.,普热德博尔斯基,S.,奈尼,A.B.,杰克逊-刘易斯,V.,特里菲利蒂,R.R.,霍维茨,J.,和伊希罗普洛斯,H.(1998年)《美国国家科学院院刊》95,7659 - 7663)。最近的数据表明,在体外暴露于过氧亚硝酸盐后,是半胱氨酸氧化而非酪氨酸硝化导致TH失活(库恩,D.M.,阿雷莎,C.W.,和格迪斯,T.J.(1999年)《神经科学杂志》19,10289 - 10294)。然而,对过氧亚硝酸盐与纯化的TH反应的重新研究未能产生半胱氨酸氧化,但导致酪氨酸硝化和失活呈浓度依赖性增加。仅在蛋白质部分展开后才观察到半胱氨酸氧化。酪氨酸残基423以及程度较轻的酪氨酸残基428和432会被硝化修饰。与野生型蛋白质相比,将Tyr(423)突变为Phe导致硝化减少但活性未丧失。停流实验显示,在pH 7.4和25℃下,过氧亚硝酸盐与TH反应的二级速率常数为(3.8±0.9)×10³ m⁻¹ s⁻¹。总体而言,数据表明过氧亚硝酸盐与蛋白质的金属中心反应,主要导致酪氨酸残基423的硝化,这是TH失活的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验