Fuss S H, Korsching S I
Institut für Genetik, Universität zu Köln, 50674 Köln, Germany.
J Neurosci. 2001 Nov 1;21(21):8396-407. doi: 10.1523/JNEUROSCI.21-21-08396.2001.
The structural determinants of an odor molecule necessary and/or sufficient for interaction with the cognate olfactory receptor(s) are not known. Olfactory receptor neurons expressing the same olfactory receptor converge in the olfactory bulb. Thus, optical imaging of neuronal activity in the olfactory bulb can visualize at once the contributions by all the different olfactory receptors responsive to a particular odorant. We have used this technique to derive estimates about the structural requirements and minimal number of different zebrafish olfactory receptors that respond to a series of naturally occurring amino acids and some structurally related compounds. We report that the alpha-carboxyl group, the alpha-amino group, and l-conformation of the amino acid are all required for activation of amino acid-responsive receptors. Increasing carbon chain length recruits successively more receptors. With increasing concentrations, the activity patterns induced by a homolog series of amino acids became more similar to each other. At intermediate concentrations patterns were unique across substances and across concentrations. The introduction of a terminal amino group (charged) both recruits additional receptors and prevents binding to some of the receptors that were responsive to the unsubstituted analog. In contrast, the introduction of a beta-hydroxyl group (polar) excluded the odorants from some of the receptors that are capable of binding the unsubstituted analog. Cross-adaptation experiments independently confirmed these results. Thus, odorant detection requires several different receptors even for relatively simple odorants such as amino acids, and individual receptors require the presence of some molecular features, the absence of others, and tolerate still other molecular features.
尚不清楚与同源嗅觉受体相互作用所必需和/或足够的气味分子的结构决定因素。表达相同嗅觉受体的嗅觉受体神经元在嗅球中汇聚。因此,嗅球中神经元活动的光学成像可以立即可视化所有对特定气味剂有反应的不同嗅觉受体的贡献。我们使用这项技术来估计对一系列天然存在的氨基酸和一些结构相关化合物有反应的不同斑马鱼嗅觉受体的结构要求和最小数量。我们报告说,氨基酸的α-羧基、α-氨基和L-构象都是激活氨基酸反应性受体所必需的。增加碳链长度会依次招募更多的受体。随着浓度的增加,同系物系列氨基酸诱导的活性模式彼此变得更加相似。在中等浓度下,不同物质和不同浓度下的模式都是独特的。引入末端氨基(带电荷)既会招募额外的受体,又会阻止与一些对未取代类似物有反应的受体结合。相反,引入β-羟基(极性)会使气味剂无法与一些能够结合未取代类似物的受体结合。交叉适应实验独立证实了这些结果。因此,即使对于相对简单的气味剂(如氨基酸),气味检测也需要几种不同的受体,而且单个受体需要存在一些分子特征,不存在其他特征,并且能够容忍其他分子特征。