Donges Dirk, Nagle Jeffrey K., Yersin Hartmut
Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany, and Department of Chemistry, Bowdoin College, Brunswick, Maine 04011.
Inorg Chem. 1997 Jul 2;36(14):3040-3048. doi: 10.1021/ic9609463.
Pt(qol)(2) (qol(-) = 8-quinolinolato-O,N) is investigated in the Shpol'skii matrices n-heptane, n-octane-h(18), n-octane-d(18), n-nonane, and n-decane, respectively. For the first time, highly resolved triplet phosphorescence as well as triplet and singlet excitation spectra are obtained at T = 1.2 K by site-selective spectroscopy. This permits the detailed characterization of the low-lying singlet and triplet states which are assigned to result mainly from intraligand charge transfer (ILCT) transitions. The electronic origin corresponding to the (3)ILCT lies at 15 426 cm(-)(1) (FWHM approximately 3 cm(-)(1)) exhibiting a zero-field splitting smaller than 1 cm(-)(1), which shows that the metal d-orbital contribution to the (3)ILCT is small. At T = 1.2 K, the three triplet sublevels emit independently due to slow spin-lattice relaxation (slr) processes. Therefore, the phosphorescence decays triexponentially with components of 4.5, 13, and 60 &mgr;s. Interestingly, two of the sublevels can be excited selectively, which leads to a distinct spin polarization manifested by a biexponential decay. At T = 20 K, the decay becomes monoexponential with tau = 10 &mgr;s due to a fast slr between the triplet sublevels. From the Zeeman splitting of the (3)ILCT the g-factor is determined to be 2.0 as expected for a relatively pure spin triplet. The (1)ILCT has its electronic origin at 18 767 cm(-)(1) and exhibits a homogeneous line width of about 12 cm(-)(1). This feature allows us to estimate a singlet-triplet intersystem crossing rate of about 2 x 10(12) s(-)(1). This relatively large rate compared to values found for closed shell metal M(qol)(n)() compounds displays the importance of spin-orbit coupling induced by the heavy metal ion. Moreover, this small admixture leads to the relatively short emission decay times. All spectra show highly resolved vibrational satellite structures. These patterns provide information about vibrational energies (which are in good accordance with Raman data) and shifts of equilibrium positions between ground and excited states. These shifts are different in the (1)ILCT and (3)ILCT states. The vibrational satellite structures support the assignment of ILCT character to the lowest excited states.
研究了Pt(qol)(2)(qol(-)=8-喹啉醇-O,N)在什波尔基矩阵正庚烷、正辛烷-h(18)、正辛烷-d(18)、正壬烷和正癸烷中的情况。首次通过位点选择性光谱在T = 1.2 K时获得了高分辨率的三重态磷光以及三重态和单重态激发光谱。这使得能够详细表征低能单重态和三重态,这些态主要归因于配体内电荷转移(ILCT)跃迁。对应于(3)ILCT的电子起源位于15426 cm(-)(1)(半高宽约为3 cm(-)(1)),零场分裂小于1 cm(-)(1),这表明金属d轨道对(3)ILCT的贡献很小。在T = 1.2 K时,由于自旋晶格弛豫(slr)过程缓慢,三个三重态子能级独立发射。因此,磷光以4.5、13和60 μs的分量呈三指数衰减。有趣的是,其中两个子能级可以被选择性激发,这导致了由双指数衰减表现出的明显自旋极化。在T = 20 K时,由于三重态子能级之间的快速slr,衰减变为单指数衰减,τ = 10 μs。从(3)ILCT的塞曼分裂确定g因子为2.0,这对于相对纯的自旋三重态是预期的。(1)ILCT的电子起源位于18767 cm(-)(1),均匀线宽约为12 cm(-)(1)。这一特征使我们能够估计单重态-三重态系间窜越速率约为2×10(12) s(-)(1)。与闭壳金属M(qol)(n)()化合物的值相比,这个相对较大的速率显示了重金属离子诱导的自旋-轨道耦合的重要性。此外,这种小的混合导致了相对较短的发射衰减时间。所有光谱都显示出高分辨率的振动卫星结构。这些模式提供了有关振动能量(与拉曼数据很好地一致)以及基态和激发态之间平衡位置移动的信息。这些移动在(1)ILCT和(3)ILCT态中是不同的。振动卫星结构支持将ILCT特征归因于最低激发态。