Suppr超能文献

估计因果强度:结构知识和处理努力的作用。

Estimating causal strength: the role of structural knowledge and processing effort.

作者信息

Waldmann M R, Hagmayer Y

机构信息

Department of Psychology, University of Göttingen, Gosslerstrasse 14, 37073 Göttingen, Germany.

出版信息

Cognition. 2001 Nov;82(1):27-58. doi: 10.1016/s0010-0277(01)00141-x.

Abstract

The strength of causal relations typically must be inferred on the basis of statistical relations between observable events. This article focuses on the problem that there are multiple ways of extracting statistical information from a set of events. In causal structures involving a potential cause, an effect and a third related event, the assumed causal role of this third event crucially determines whether it is appropriate to control for this event when making causal assessments between the potential cause and the effect. Three experiments show that prior assumptions about the causal roles of the learning events affect the way contingencies are assessed with otherwise identical learning input. However, prior assumptions about causal roles is only one factor influencing contingency estimation. The experiments also demonstrate that processing effort affects the way statistical information is processed. These findings provide further evidence for the interaction between bottom-up and top-down influences in the acquisition of causal knowledge. They show that, apart from covariation information or knowledge about mechanisms, abstract assumptions about causal structures also may affect the learning process.

摘要

因果关系的强度通常必须基于可观察事件之间的统计关系来推断。本文关注的问题是,从一组事件中提取统计信息有多种方式。在涉及潜在原因、一个结果和第三个相关事件的因果结构中,这个第三个事件所假定的因果作用在对潜在原因和结果进行因果评估时,决定性地决定了控制该事件是否合适。三个实验表明,关于学习事件因果作用的先验假设会影响在其他方面相同的学习输入下对偶然性的评估方式。然而,关于因果作用的先验假设只是影响偶然性估计的一个因素。这些实验还表明,处理努力会影响统计信息的处理方式。这些发现为自下而上和自上而下的影响在因果知识获取中的相互作用提供了进一步的证据。它们表明,除了共变信息或关于机制的知识外,关于因果结构的抽象假设也可能影响学习过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验