Post S, Weng Y C, Cimprich K, Chen L B, Xu Y, Lee E Y
Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245, USA.
Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13102-7. doi: 10.1073/pnas.231364598. Epub 2001 Oct 30.
ATR [ataxia-telangiectasia-mutated (ATM)- and Rad3-related] is a protein kinase required for both DNA damage-induced cell cycle checkpoint responses and the DNA replication checkpoint that prevents mitosis before the completion of DNA synthesis. Although ATM and ATR kinases share many substrates, the different phenotypes of ATM- and ATR-deficient mice indicate that these kinases are not functionally redundant. Here we demonstrate that ATR but not ATM phosphorylates the human Rad17 (hRad17) checkpoint protein on Ser(635) and Ser(645) in vitro. In undamaged synchronized human cells, these two sites were phosphorylated in late G(1), S, and G(2)/M, but not in early-mid G(1). Treatment of cells with genotoxic stress induced phosphorylation of hRad17 in cells in early-mid G(1). Expression of kinase-inactive ATR resulted in reduced phosphorylation of these residues, but these same serine residues were phosphorylated in ionizing radiation (IR)-treated ATM-deficient human cell lines. IR-induced phosphorylation of hRad17 was also observed in ATM-deficient tissues, but induction of Ser(645) was not optimal. Expression of a hRad17 mutant, with both serine residues changed to alanine, abolished IR-induced activation of the G(1)/S checkpoint in MCF-7 cells. These results suggest ATR and hRad17 are essential components of a DNA damage response pathway in mammalian cells.
ATR(共济失调毛细血管扩张症突变(ATM)相关蛋白及Rad3相关蛋白)是一种蛋白激酶,在DNA损伤诱导的细胞周期检查点反应以及DNA复制检查点中发挥作用,后者可在DNA合成完成前阻止有丝分裂。尽管ATM激酶和ATR激酶有许多共同底物,但ATM缺陷小鼠和ATR缺陷小鼠的不同表型表明这两种激酶在功能上并非冗余。在此我们证明,在体外,ATR而非ATM可使人类Rad17(hRad17)检查点蛋白的Ser(635)和Ser(645)位点发生磷酸化。在未受损伤的同步化人类细胞中,这两个位点在G1晚期、S期和G2/M期发生磷酸化,但在G1早期至中期未发生磷酸化。用基因毒性应激处理细胞可诱导hRad17在G1早期至中期的细胞中发生磷酸化。激酶失活的ATR的表达导致这些残基的磷酸化减少,但在经电离辐射(IR)处理的ATM缺陷人类细胞系中,这些相同的丝氨酸残基发生了磷酸化。在ATM缺陷组织中也观察到了IR诱导的hRad17磷酸化,但Ser(645)的诱导效果并非最佳。将两个丝氨酸残基都替换为丙氨酸的hRad17突变体的表达消除了MCF-7细胞中IR诱导的G1/S检查点激活。这些结果表明,ATR和hRad17是哺乳动物细胞中DNA损伤反应途径的重要组成部分。