Suppr超能文献

酵母连续培养过程中发现的超日呼吸振荡的时钟控制

Clock control of ultradian respiratory oscillation found during yeast continuous culture.

作者信息

Murray D B, Roller S, Kuriyama H, Lloyd D

机构信息

School of Applied Science, South Bank University, London SE1 0AA, United Kingdom.

出版信息

J Bacteriol. 2001 Dec;183(24):7253-9. doi: 10.1128/JB.183.24.7253-7259.2001.

Abstract

A short-period autonomous respiratory ultradian oscillation (period approximately 40 min) occurs during aerobic Saccharomyces cerevisiae continuous culture and is most conveniently studied by monitoring dissolved O(2) concentrations. The resulting data are high quality and reveal fundamental information regarding cellular dynamics. The phase diagram and discrete fast Fourier transformation of the dissolved O(2) values revealed a square waveform with at least eight harmonic peaks. Stepwise changes in temperature revealed that the oscillation was temperature compensated at temperatures ranging from 27 to 34 degrees C when either glucose (temperature quotient [Q(10)] = 1.02) or ethanol (Q(10) = 0.82) was used as a carbon source. After alteration of the temperature beyond the temperature compensation region, phase coherence events for individual cells were quickly lost. As the cell doubling rate decreased from 15.5 to 9.2 h (a factor of 1.68), the periodicity decreased by a factor of 1.26. This indicated that there was a degree of nutrient compensation. Outside the range of dilution rates at which stable oscillation occurred, the mode of oscillation changed. The oscillation in respiratory output is therefore under clock control.

摘要

在酿酒酵母需氧连续培养过程中会出现一种短期自主呼吸超日振荡(周期约40分钟),通过监测溶解氧浓度来研究最为便捷。所得数据质量很高,揭示了有关细胞动态的基本信息。溶解氧值的相图和离散快速傅里叶变换显示出具有至少八个谐波峰值的方波。温度的逐步变化表明,当使用葡萄糖(温度系数[Q₁₀]=1.02)或乙醇(Q₁₀=0.82)作为碳源时,该振荡在27至34摄氏度的温度范围内是温度补偿的。温度改变超出温度补偿区域后,单个细胞的相位相干事件迅速消失。随着细胞倍增率从15.5小时降至9.2小时(1.68倍),周期缩短了1.26倍。这表明存在一定程度的营养补偿。在发生稳定振荡的稀释率范围之外,振荡模式发生了变化。因此,呼吸输出的振荡受生物钟控制。

相似文献

1
Clock control of ultradian respiratory oscillation found during yeast continuous culture.
J Bacteriol. 2001 Dec;183(24):7253-9. doi: 10.1128/JB.183.24.7253-7259.2001.
2
The Gts1 protein stabilizes the autonomous oscillator in yeast.
Yeast. 2003 Apr 30;20(6):463-70. doi: 10.1002/yea.976.
3
Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony.
Yeast. 2000 Sep 30;16(13):1185-90. doi: 10.1002/1097-0061(20000930)16:13<1185::AID-YEA619>3.0.CO;2-W.
4
Ultradian metronome: timekeeper for orchestration of cellular coherence.
Trends Biochem Sci. 2005 Jul;30(7):373-7. doi: 10.1016/j.tibs.2005.05.005.
7
Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae.
Biotechnol Bioeng. 2003 Apr 20;82(2):143-51. doi: 10.1002/bit.10553.
9
Metabolic transition step from ethanol consumption to sugar/ethanol consumption by Saccharomyces cerevisiae.
Biotechnol Lett. 2004 Nov;26(21):1671-4. doi: 10.1007/s10529-004-3520-5.

引用本文的文献

1
Temporal oscillation of phospholipids promotes metabolic efficiency.
Nat Chem Biol. 2025 Apr 14. doi: 10.1038/s41589-025-01885-5.
2
Re-scoping ultradian rhythms in the context of metabolism.
Front Physiol. 2024 Dec 12;15:1504879. doi: 10.3389/fphys.2024.1504879. eCollection 2024.
3
Mathematical modeling and analysis of mitochondrial retrograde signaling dynamics.
iScience. 2022 Nov 11;25(12):105502. doi: 10.1016/j.isci.2022.105502. eCollection 2022 Dec 22.
5
The molecular basis of metabolic cycles and their relationship to circadian rhythms.
Nat Struct Mol Biol. 2016 Dec 6;23(12):1035-1044. doi: 10.1038/nsmb.3311.
6
The flavoproteome of the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 2014 Mar;1844(3):535-44. doi: 10.1016/j.bbapap.2013.12.015. Epub 2013 Dec 27.
7
Visible light alters yeast metabolic rhythms by inhibiting respiration.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21130-5. doi: 10.1073/pnas.1313369110. Epub 2013 Dec 2.
8
Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators.
FEBS J. 2012 Mar;279(6):1119-30. doi: 10.1111/j.1742-4658.2012.08508.x. Epub 2012 Feb 27.
9
What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival.
Integr Biol (Camb). 2012 Jan;4(1):65-74. doi: 10.1039/c1ib00124h. Epub 2011 Dec 5.
10
Spatio-temporal dynamics of yeast mitochondrial biogenesis: transcriptional and post-transcriptional mRNA oscillatory modules.
PLoS Comput Biol. 2009 Jun;5(6):e1000409. doi: 10.1371/journal.pcbi.1000409. Epub 2009 Jun 12.

本文引用的文献

1
Effects of temperature upon diurnal rhythms.
Cold Spring Harb Symp Quant Biol. 1960;25:87-104. doi: 10.1101/sqb.1960.025.01.009.
2
Circadian rhythms and the circadian organization of living systems.
Cold Spring Harb Symp Quant Biol. 1960;25:159-84. doi: 10.1101/sqb.1960.025.01.015.
6
Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony.
Yeast. 2000 Sep 30;16(13):1185-90. doi: 10.1002/1097-0061(20000930)16:13<1185::AID-YEA619>3.0.CO;2-W.
7
Phosphorylation of the GTS1 gene product of the yeast Saccharomyces cerevisiae and its effect on heat tolerance and flocculation.
FEMS Microbiol Lett. 2000 Jun 15;187(2):179-84. doi: 10.1111/j.1574-6968.2000.tb09157.x.
8
Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks.
Curr Opin Microbiol. 2000 Apr;3(2):189-96. doi: 10.1016/s1369-5274(00)00074-6.
9
The Goodwin oscillator: on the importance of degradation reactions in the circadian clock.
J Biol Rhythms. 1999 Dec;14(6):469-79. doi: 10.1177/074873099129001037.
10
Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae.
Microbiology (Reading). 1999 Oct;145 ( Pt 10):2739-45. doi: 10.1099/00221287-145-10-2739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验