Suppr超能文献

哺乳动物非编码基因组DNA中散在重复序列与分歧之间的关联。

Association between divergence and interspersed repeats in mammalian noncoding genomic DNA.

作者信息

Chiaromonte F, Yang S, Elnitski L, Yap V B, Miller W, Hardison R C

机构信息

Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14503-8. doi: 10.1073/pnas.251423898. Epub 2001 Nov 20.

Abstract

The amount of noncoding genomic DNA sequence that aligns between human and mouse varies substantially in different regions of their genomes, and the amount of repetitive DNA also varies. In this report, we show that divergence in noncoding nonrepetitive DNA is strongly correlated with the amount of repetitive DNA in a region. We investigated aligned DNA in four large genomic regions with finished human sequence and almost or completely finished mouse sequence. These regions, totaling 5.89 Mb of DNA, are on different chromosomes and vary in their base composition. An analysis based on sliding windows of 10 kb shows that the fraction of aligned noncoding nonrepetitive DNA and the fraction of repetitive DNA are negatively correlated, both at the level of an entire region and locally within it. This conclusion is strongly supported by a randomization study, in which repetitive elements are removed and randomly relocated along the sequences. Thus, regions of noncoding genomic DNA that accumulated fewer point mutations since the primate-rodent divergence also suffered fewer retrotransposition events. These results indicate that some regions of the genome are more "flexible" over the time scale of mammalian evolution, being able to accommodate many point mutations and insertions, whereas other regions are more "rigid" and accumulate fewer changes. Stronger conservation is generally interpreted as indicating more extensive or more important function. The evidence presented here of correlated variation in the rates of different evolutionary processes across noncoding DNA must be considered in assessing such conservation for evidence of selection.

摘要

人类和小鼠基因组之间可比对的非编码基因组DNA序列数量在其基因组的不同区域有很大差异,重复DNA的数量也各不相同。在本报告中,我们表明非编码非重复DNA的差异与一个区域内重复DNA的数量密切相关。我们研究了人类基因组序列已完成、小鼠基因组序列几乎或完全完成的四个大型基因组区域中的比对DNA。这些区域的DNA总量为5.89 Mb,位于不同的染色体上,碱基组成也各不相同。基于10 kb滑动窗口的分析表明,在整个区域及其局部水平上,比对的非编码非重复DNA的比例与重复DNA的比例呈负相关。一项随机化研究有力地支持了这一结论,在该研究中,重复元件被去除并沿序列随机重新定位。因此,自灵长类动物与啮齿动物分化以来积累较少点突变的非编码基因组DNA区域,反转录转座事件也较少。这些结果表明,在哺乳动物进化的时间尺度上,基因组的某些区域更“灵活”,能够容纳许多点突变和插入,而其他区域则更“刚性”,积累的变化较少。更强的保守性通常被解释为表明功能更广泛或更重要。在评估这种保守性以寻找选择证据时,必须考虑这里提出的确凿证据,即不同进化过程在非编码DNA中的速率存在相关变化。

相似文献

1
Association between divergence and interspersed repeats in mammalian noncoding genomic DNA.
Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14503-8. doi: 10.1073/pnas.251423898. Epub 2001 Nov 20.
3
Homology-dependent methylation in primate repetitive DNA.
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5471-6. doi: 10.1073/pnas.0408986102. Epub 2005 Mar 29.
4
Identification of evolutionary hotspots in the rodent genomes.
Genome Res. 2004 Apr;14(4):574-9. doi: 10.1101/gr.1967904.
5
The genome size evolution of medaka (Oryzias latipes) and fugu (Takifugu rubripes).
Genes Genet Syst. 2007 Apr;82(2):135-44. doi: 10.1266/ggs.82.135.
6
L1 recombination-associated deletions generate human genomic variation.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19366-71. doi: 10.1073/pnas.0807866105. Epub 2008 Nov 26.
8
A large family of ancient repeat elements in the human genome is under strong selection.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2740-5. doi: 10.1073/pnas.0511238103. Epub 2006 Feb 13.
9
Genomic selective constraints in murid noncoding DNA.
PLoS Genet. 2006 Nov 24;2(11):e204. doi: 10.1371/journal.pgen.0020204. Epub 2006 Oct 18.
10
Human genome dispersal and evolution of 4q35 duplications and interspersed LSau repeats.
Gene. 2002 Aug 21;296(1-2):21-7. doi: 10.1016/s0378-1119(02)00858-2.

引用本文的文献

1
The role of 3D genome organization in disease: From compartments to single nucleotides.
Semin Cell Dev Biol. 2019 Jun;90:104-113. doi: 10.1016/j.semcdb.2018.07.005. Epub 2018 Jul 17.
2
The effects of chromatin organization on variation in mutation rates in the genome.
Nat Rev Genet. 2015 Apr;16(4):213-23. doi: 10.1038/nrg3890. Epub 2015 Mar 3.
3
A genome-wide view of mutation rate co-variation using multivariate analyses.
Genome Biol. 2011;12(3):R27. doi: 10.1186/gb-2011-12-3-r27. Epub 2011 Mar 22.
5
Conservation of human microsatellites across 450 million years of evolution.
Genome Biol Evol. 2010 Feb 8;2:153-65. doi: 10.1093/gbe/evq007.
6
Evolution of transcription factor binding sites in mammalian gene regulatory regions: handling counterintuitive results.
J Mol Evol. 2009 Jun;68(6):654-64. doi: 10.1007/s00239-009-9238-1. Epub 2009 May 29.
7
Human-macaque comparisons illuminate variation in neutral substitution rates.
Genome Biol. 2008 Apr 30;9(4):R76. doi: 10.1186/gb-2008-9-4-r76.
8
Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans.
PLoS Biol. 2007 Nov 6;5(11):e310. doi: 10.1371/journal.pbio.0050310.
9
A survey of genomic properties for the detection of regulatory polymorphisms.
PLoS Comput Biol. 2007 Jun;3(6):e106. doi: 10.1371/journal.pcbi.0030106. Epub 2007 Apr 25.
10
Early history of mammals is elucidated with the ENCODE multiple species sequencing data.
PLoS Genet. 2007 Jan 5;3(1):e2. doi: 10.1371/journal.pgen.0030002.

本文引用的文献

1
Selective constraint in intergenic regions of human and mouse genomes.
Trends Genet. 2001 Jul;17(7):373-6. doi: 10.1016/s0168-9525(01)02344-7.
2
Genomic strategies to identify mammalian regulatory sequences.
Nat Rev Genet. 2001 Feb;2(2):100-9. doi: 10.1038/35052548.
3
TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome.
Cell. 2001 Feb 23;104(4):619-29. doi: 10.1016/s0092-8674(01)00247-1.
4
Initial sequencing and analysis of the human genome.
Nature. 2001 Feb 15;409(6822):860-921. doi: 10.1038/35057062.
5
The 22q11 deletion syndromes.
Hum Mol Genet. 2000 Oct;9(16):2421-6. doi: 10.1093/hmg/9.16.2421.
6
Conserved noncoding sequences are reliable guides to regulatory elements.
Trends Genet. 2000 Sep;16(9):369-72. doi: 10.1016/s0168-9525(00)02081-3.
7
The DNA sequence of human chromosome 21.
Nature. 2000 May 18;405(6784):311-9. doi: 10.1038/35012518.
8
PipMaker--a web server for aligning two genomic DNA sequences.
Genome Res. 2000 Apr;10(4):577-86. doi: 10.1101/gr.10.4.577.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验