Ogasawara M, Kurihara T, Hu Q, Tanabe T
Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, CREST, Japan Science and Technology Corporation, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
FEBS Lett. 2001 Nov 16;508(2):181-6. doi: 10.1016/s0014-5793(01)03052-6.
To study the role of the Ca(v)2.1/alpha(1A) (P/Q-type) Ca(2+) channel in somatosensory pain processing, behavioral and electrophysiological studies were conducted using the leaner (tg(la)/tg(la)) mouse. Behavioral analyses in tg(la)/tg(la) revealed reduced responses to mechanical stimuli, and enhanced responses to heat stimuli. Electrophysiological analyses showed that tg(la)/tg(la) had a significantly reduced ability to evoke dorsal root potentials, suggesting a functional deficit in the spinal dorsal horn local circuitry responsible for presynaptic inhibition of primary sensory fibers. These results suggest the critical importance of the P/Q-type channel in modulation of acute somatosensory pain transmission in spinal cord.