Cho H S, Pelton J G, Yan D, Kustu S, Wemmer D E
Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
Curr Opin Struct Biol. 2001 Dec;11(6):679-84. doi: 10.1016/s0959-440x(01)00271-8.
Bacteria use a strategy referred to as two-component signal transduction to sense a variety of stimuli and initiate an appropriate response. Signal processing begins with proteins referred to as histidine kinases. In most cases, these are membrane-bound receptors that respond to environmental cues. Histidine kinases use ATP as a phosphodonor to phosphorylate a conserved histidine residue. Subsequent transfer of the phosphoryl group to a conserved aspartyl residue in the cognate response regulator results in an appropriate output. Recent structural studies of activated (phosphorylated) response regulators and their aspartate-bearing regulatory domains have provided insight into the links between the chemistry and biology of these ubiquitous regulatory proteins. Chemical aspects of their function appear to generalize broadly to enzymes that adopt a phosphoaspartate intermediate.
细菌采用一种称为双组分信号转导的策略来感知各种刺激并引发适当的反应。信号处理始于被称为组氨酸激酶的蛋白质。在大多数情况下,这些是对环境线索做出反应的膜结合受体。组氨酸激酶利用ATP作为磷供体来磷酸化一个保守的组氨酸残基。随后,磷酰基转移到同源反应调节因子中一个保守的天冬氨酸残基上,从而产生适当的输出。最近对活化(磷酸化)反应调节因子及其含天冬氨酸的调节结构域的结构研究,为深入了解这些普遍存在的调节蛋白的化学性质与生物学功能之间的联系提供了线索。它们功能的化学方面似乎广泛适用于采用磷酸天冬氨酸中间体的酶。