Mirsky Rhona, Jessen Kristjan R, Brennan Angela, Parkinson David, Dong Ziping, Meier Carola, Parmantier Eric, Lawson Durward
Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, UK.
J Physiol Paris. 2002 Jan-Mar;96(1-2):17-24. doi: 10.1016/s0928-4257(01)00076-6.
Myelinating and non-myelinating Schwann cells of peripheral nerves are derived from the neural crest via an intermediate cell type, the Schwann cell precursor [K.R. Jessen, A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto, J. Gavrilovic. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves, Neuron 12 (1994) 509-527]. The survival and maturation of Schwann cell precursors is controlled by a neuronally derived signal, beta neuregulin. Other factors, in particular endothelins, regulate the timing of precursor maturation and Schwann cell generation. In turn, signals derived from Schwann cell precursors or Schwann cells regulate neuronal numbers during development, and axonal calibre, distribution of ion channels and neurofilament phosphorylation in myelinated axons. Unlike Schwann cell precursors, Schwann cells in older nerves survive in the absence of axons, indicating that a significant change in survival regulation occurs. This is due primarily to the presence of autocrine growth factor loops in Schwann cells, present from embryo day 18 onwards, that are not functional in Schwann cell precursors. The most important components of the autocrine loop are insulin-like growth factors, platelet derived growth factor-BB and neurotrophin 3, which together with laminin support long-term Schwann cell survival. The paracrine dependence of precursors on axons for survival provides a mechanism for matching precursor cell number to axons in embryonic nerves, while the ability of Schwann cells to survive in the absence of axons is an absolute prerequisite for nerve repair following injury. In addition to providing survival factors to neurones and themselves, and signals that determine axonal architecture, Schwann cells also control the formation of peripheral nerve sheaths. This involves Schwann cell-derived Desert Hedgehog, which directs the transition of mesenchymal cells to form the epithelium-like structure of the perineurium. Schwann cells thus signal not only to themselves but also to the other cellular components within the nerve to act as major regulators of nerve development.
外周神经的髓鞘形成性施万细胞和非髓鞘形成性施万细胞源自神经嵴,经由一种中间细胞类型,即施万细胞前体[K.R. 杰森、A. 布伦南、L. 摩根、R. 米尔斯基、A. 肯特、Y. 桥本、J. 加夫里洛维奇。施万细胞前体及其命运:大鼠胚胎神经胶质生成过程中细胞死亡和分化的研究,《神经元》12 (1994) 509 - 527]。施万细胞前体的存活和成熟受神经元衍生信号β神经调节蛋白控制。其他因素,尤其是内皮素,调节前体成熟和施万细胞生成的时间。反过来,施万细胞前体或施万细胞衍生的信号在发育过程中调节神经元数量,以及有髓轴突的轴突管径、离子通道分布和神经丝磷酸化。与施万细胞前体不同,较老神经中的施万细胞在没有轴突的情况下也能存活,这表明存活调节发生了显著变化。这主要是由于施万细胞中自分泌生长因子环的存在,从胚胎第18天起就存在,而在施万细胞前体中不起作用。自分泌环的最重要成分是胰岛素样生长因子、血小板衍生生长因子 - BB和神经营养因子3,它们与层粘连蛋白一起支持施万细胞的长期存活。前体对轴突存活的旁分泌依赖性为胚胎神经中前体细胞数量与轴突的匹配提供了一种机制,而施万细胞在没有轴突的情况下存活的能力是损伤后神经修复的绝对前提。除了向神经元和自身提供存活因子以及决定轴突结构的信号外,施万细胞还控制外周神经鞘的形成。这涉及施万细胞衍生的沙漠刺猬因子,它指导间充质细胞的转变以形成神经束膜的上皮样结构。因此,施万细胞不仅向自身发出信号,还向神经内的其他细胞成分发出信号,从而成为神经发育的主要调节因子。