Affar El Bachir, Shah Rashmi G, Dallaire Annie-Karine, Castonguay Vincent, Shah Girish M
Laboratory for Skin Cancer Research, Hospital Research Center of Laval University (Centre Hospitalier Universitaire de Québec), Faculty of Medicine, Laval University, 2705, Laurier Boulevard, Room S16, Sainte-Foy, Quebec, Canada.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):245-50. doi: 10.1073/pnas.012460399. Epub 2001 Dec 26.
In response to high levels of DNA damage, catalytic activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) triggers necrotic death because of rapid consumption of its substrate beta-nicotinamide adenine dinucleotide and consequent depletion of ATP. We examined whether there are other consequences of PARP activation that could contribute to cell death. Here, we show that PARP activation reaction in vitro becomes acidic with release of protons during hydrolysis of beta-nicotinamide adenine dinucleotide. In the cellular context, we show that Molt 3 cells respond to DNA damage by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) with a dose-dependent acidification within 30 min. Whereas acidification by 0.15 pH units induced by 10 microM MNNG is reversed within 1 h, 100 , microinduced acidification by 0.5-0.6 pH units is persistent up to 7 h. Acidification is a general DNA damage response because H(2)O(2) exposure also acidifies Molt 3 cells, and MNNG causes acidification in Jurkat, U937, or HL-60 leukemia cells and in PARP(+/+) fibroblasts. Acidification is significantly decreased in the presence of PARP inhibitors or in PARP(-/-) fibroblasts, suggesting a major role for PARP activation in acidification. Inhibition of proton export through ATP-dependent Na(+)/H(+) exchanger is another major cause of acidification. Using the pH clamp method to either suppress or introduce changes in cellular pH, we show that brief acidification by 0.5-0.6 pH units may be a negative regulator of apoptosis while permitting necrotic death of cells with extensively damaged DNA.
在高水平DNA损伤的刺激下,核酶聚(ADP - 核糖)聚合酶(PARP)的催化激活会引发坏死性死亡,这是因为其底物β - 烟酰胺腺嘌呤二核苷酸被快速消耗,进而导致ATP耗竭。我们研究了PARP激活是否还有其他可能导致细胞死亡的后果。在此,我们发现体外PARP激活反应在β - 烟酰胺腺嘌呤二核苷酸水解过程中会随着质子的释放而变酸。在细胞环境中,我们发现Molt 3细胞在受到烷基化剂N - 甲基 - N'-硝基 - N - 亚硝基胍(MNNG)导致的DNA损伤时,会在30分钟内出现剂量依赖性酸化。由10 microM MNNG诱导的0.15个pH单位的酸化在1小时内会逆转,但由100 microM MNNG诱导的0.5 - 0.6个pH单位的酸化会持续长达7小时。酸化是一种普遍的DNA损伤反应,因为暴露于H₂O₂也会使Molt 3细胞酸化,并且MNNG会使Jurkat、U937或HL - 60白血病细胞以及PARP(+/+)成纤维细胞酸化。在存在PARP抑制剂的情况下或在PARP(-/-)成纤维细胞中,酸化会显著降低,这表明PARP激活在酸化过程中起主要作用。通过ATP依赖的Na⁺/H⁺交换体抑制质子输出是酸化的另一个主要原因。使用pH钳制方法来抑制或引入细胞pH的变化,我们发现0.5 - 0.6个pH单位的短暂酸化可能是细胞凋亡的负调节因子,同时允许具有广泛受损DNA的细胞发生坏死性死亡。