Sillanpää M J, Kilpikari R, Ripatti S, Onkamo P, Uimari P
Rolf Nevanlinna Institute, P.O. Box 4, FIN-00014, University of Helsinki, Finland.
Genet Epidemiol. 2001;21 Suppl 1:S692-9. doi: 10.1002/gepi.2001.21.s1.s692.
We introduce a novel Bayesian approach to estimate and account for population structure simultaneously with association mapping of multiple quantitative trait loci. The method is designed for an analysis of unrelated individuals from a mixture of two populations (no admixture), where the individual population memberships are unknown. In our approach, the population structure is estimated and accounted for by using data on additional "grouping" markers which are assumed to be in Hardy-Weinberg equilibrium within the populations but have different allele frequencies between the populations. We use Bayesian hierarchical modeling and Markov chain Monte Carlo estimation, where we allow both population stratification and genetic heterogeneity. In our model the number of quantitative trait loci and their positions are treated as random variables, and we obtain their posterior distributions. Here we select the candidate and the grouping markers based on results from a preliminary SOLAR analysis.
我们引入了一种新颖的贝叶斯方法,用于在对多个数量性状位点进行关联作图的同时估计并考虑群体结构。该方法专为分析来自两个群体混合样本(无混合)的无关个体而设计,其中个体所属群体未知。在我们的方法中,通过使用额外“分组”标记的数据来估计并考虑群体结构,这些标记假定在群体内处于哈迪 - 温伯格平衡,但在不同群体间具有不同的等位基因频率。我们使用贝叶斯层次模型和马尔可夫链蒙特卡罗估计,其中我们同时考虑群体分层和遗传异质性。在我们的模型中,数量性状位点的数量及其位置被视为随机变量,并获得它们的后验分布。在这里,我们根据初步的SOLAR分析结果选择候选标记和分组标记。