Riedel W, Neeck G
Max-Planck-Institut für Physiologische und Klinische Forschung W.-G.-Kerckhoff-Institut Parkstrasse 1, 61231 Bad Nauheim, Germany.
Z Rheumatol. 2001 Dec;60(6):404-15. doi: 10.1007/s003930170003.
The physiology of nociception involves a complex interaction of peripheral and central nervous system (CNS) structures, extending from the skin, the viscera and the musculoskeletal tissues to the cerebral cortex. The pathophysiology of chronic pain shows alterations of normal physiological pathways, giving rise to hyperalgesia or allodynia. After integration in the spinal cord, nociceptive information is transferred to thalamic structures before it reaches the somatosensory cortex. Each of these levels of the CNS contain modulatory mechanisms. The two most important systems in modulating nociception and antinociception, the N-methyl-D-aspartate (NMDA) and opioid receptor system, show a close distribution pattern in nearly all CNS regions, and activation of NMDA receptors has been found to contribute to the hyperalgesia associated with nerve injury or inflammation. Apart from substance P (SP), the major facilitatory effect in nociception is exerted by glutamate as the natural activator of NMDA receptors. Stimulation of ionotropic NMDA receptors causes intraneuronal elevation of Ca2+ which stimulates nitric oxide synthase (NOS) and the production of nitric oxide (NO). NO as a gaseous molecule diffuses out from the neuron and by action on guanylyl cyclase, NO stimulates in neighboring neurons the formation of cGMP. Depending on the expression of cGMP-controlled ion channels in target neurons, NO may act excitatory or inhibitory. NO has been implicated in the development of hyperexcitability, resulting in hyperalgesia or allodynia, by increasing nociceptive transmitters at their central terminals. Among the three subtypes of opioid receptors, mu- and delta-receptors either inhibit or potentiate NMDA receptor-mediated events, while kappa opioids antagonize NMDA receptor-mediated activity. Recently, CRH has been found to act at all levels of the neuraxis to produce analgesia. Modulation of nociception occurs at all levels of the neuraxis, thus, eliciting the multidimensional experience of pain involving sensory-discriminative, affective-motivational, cognitive and locomotor components.
伤害感受的生理学涉及外周和中枢神经系统(CNS)结构的复杂相互作用,范围从皮肤、内脏和肌肉骨骼组织一直延伸到大脑皮层。慢性疼痛的病理生理学表现为正常生理途径的改变,从而导致痛觉过敏或异常性疼痛。在脊髓整合后,伤害性信息在到达躯体感觉皮层之前先传递至丘脑结构。CNS的这些层面均包含调节机制。在调节伤害感受和抗伤害感受方面,两个最重要的系统,即N-甲基-D-天冬氨酸(NMDA)和阿片受体系统,在几乎所有CNS区域都呈现出紧密的分布模式,并且已发现NMDA受体的激活会导致与神经损伤或炎症相关的痛觉过敏。除了P物质(SP)之外,在伤害感受中起主要促进作用的是作为NMDA受体天然激活剂的谷氨酸。离子型NMDA受体的刺激会导致神经元内Ca2+升高,进而刺激一氧化氮合酶(NOS)并产生一氧化氮(NO)。NO作为一种气体分子从神经元中扩散出来,并通过作用于鸟苷酸环化酶,在相邻神经元中刺激cGMP的形成。根据靶神经元中cGMP控制的离子通道的表达情况不同,NO可能起兴奋或抑制作用。NO通过增加伤害性递质在其中枢终末的释放,参与了兴奋性增高的过程,从而导致痛觉过敏或异常性疼痛。在阿片受体的三种亚型中,μ-和δ-受体要么抑制要么增强NMDA受体介导的事件,而κ阿片类药物则拮抗NMDA受体介导的活性。最近,已发现促肾上腺皮质激素释放激素(CRH)在神经轴的各个层面发挥作用以产生镇痛效果。伤害感受的调节发生在神经轴的各个层面,因此引发了涉及感觉辨别、情感动机、认知和运动成分的多维疼痛体验。