Dumoulin Mireille, Conrath Katja, Van Meirhaeghe Annemie, Meersman Filip, Heremans Karel, Frenken Leon G J, Muyldermans Serge, Wyns Lode, Matagne Andre
Laboratoire d'Enzymologie, Centre d'Ingénerie des Protéines, Institut de Chimie B6, Université de Liége, B-4000 Liége, Belgium.
Protein Sci. 2002 Mar;11(3):500-15. doi: 10.1110/ps.34602.
A variety of techniques, including high-pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single-domain antigen binders derived from camelid heavy-chain antibodies with specificities for lysozymes, beta-lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical-induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two-state mechanism (N <--> U), where only the native and the denatured states are significantly populated. Thermally-induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat-induced denaturation (apparent T(m) = 60-80 degrees C), and display high conformational stabilities (DeltaG(H(2)O) = 30-60 kJ mole(-1)). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy-chain antibody fragments are of special interest for biotechnological and medical applications.
多种技术,包括通过傅里叶变换红外光谱、荧光、圆二色性和表面等离子体共振光谱监测的高压展开,已被用于研究六种源自骆驼科动物重链抗体的单域抗原结合物的平衡折叠特性,这些结合物对溶菌酶、β-内酰胺酶和一种染料(RR6)具有特异性。各种变性条件(氯化胍、尿素、温度和压力)为表征抗体片段的稳定性和展开特性提供了互补且独立的方法。对于所有结合物,复性后生物活性的完全恢复表明化学诱导的展开是完全可逆的。此外,通过光谱方法和亲和力测量进行的变性实验表明,抗体片段在单一转变中协同展开。因此,展开/复性平衡通过简单的两态机制(N <--> U)进行,其中只有天然态和变性态大量存在。然而,热诱导的变性并非完全可逆,结合能力的部分丧失可能至少部分归因于负责抗原识别的长环(互补决定区)的错误复性。最有趣的是,所有片段对热诱导的变性都相当耐受(表观熔解温度 = 60 - 80摄氏度),并表现出高构象稳定性(ΔG(H₂O) = 30 - 60 kJ·mol⁻¹)。对于任何功能性传统抗体片段,即使考虑经过工程改造的抗原结合物,都从未报道过如此高的热力学稳定性。因此,骆驼科动物重链抗体片段的尺寸减小、溶解性提高和稳定性增强对于生物技术和医学应用具有特殊意义。