Suppr超能文献

确定门诊药物滥用项目中人员流失的预测因素。

Determining predictors of attrition in an outpatient substance abuse program.

作者信息

Sayre Shelly L, Schmitz Joy M, Stotts Angela L, Averill Patricia M, Rhoades Howard M, Grabowski John J

机构信息

Department of Psychiatry and Behavioral Medicine, Substance Abuse-Medications Development Research Center, The University of Texas-Houston Medical School, 77030, USA.

出版信息

Am J Drug Alcohol Abuse. 2002;28(1):55-72. doi: 10.1081/ada-120001281.

Abstract

Determining pre-treatment variables that predict attrition in an outpatient cocaine abuse program is critically important in efforts to enhance retention and ultimately improve client outcome. Potential predictors have been identified, such as treatment history, deviant behaviors, and level of drug use; however there is not widespread agreement on their applicability across treatments and populations. This study examines the relationship of demographic, drug use severity, and psychosocial factors with treatment attrition and the time of dropout. One hundred and sixty-five individuals from the Houston area, seeking treatment for cocaine dependence, completed a pre-treatment assessment battery prior to starting 12 weeks of outpatient treatment. A series of regression analyses showed that treatment dropouts were more likely to be separated from their spouses, have poorer family/social functioning, have fewer years of education, and to be female. Those participants with higher education levels and those with poorer psychiatric functioning tended to remain in treatment longer. The implications of these findings are discussed.

摘要

确定能够预测门诊可卡因滥用治疗项目中治疗中断情况的治疗前变量,对于提高治疗保留率并最终改善患者治疗效果的努力而言至关重要。已经确定了一些潜在的预测因素,如治疗史、偏差行为和药物使用水平;然而,对于它们在不同治疗方法和人群中的适用性,尚未达成广泛共识。本研究考察了人口统计学、药物使用严重程度和心理社会因素与治疗中断及退出时间之间的关系。来自休斯顿地区的165名寻求可卡因依赖治疗的个体,在开始为期12周的门诊治疗前完成了一套治疗前评估。一系列回归分析表明,治疗退出者更有可能与配偶分居、家庭/社会功能较差、受教育年限较少且为女性。那些教育水平较高以及精神功能较差的参与者往往在治疗中停留的时间更长。本文讨论了这些研究结果的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验