Suppr超能文献

计算由含杂原子的结构单元生成的虚拟组合库的维纳型指数。

Computing wiener-type indices for virtual combinatorial libraries generated from heteroatom-containing building blocks.

作者信息

Ivanciuc Ovidiu, Klein Douglas J

机构信息

Department of Marine Sciences, Texas A&M University at Galveston, Fort Crockett Campus, 5007 Avenue U, Galveston, Texas 77551, USA.

出版信息

J Chem Inf Comput Sci. 2002 Jan-Feb;42(1):8-22. doi: 10.1021/ci010072p.

Abstract

The expensive and time-consuming process of drug lead discovery is significantly accelerated by efficiently screening molecular libraries with a high structural diversity and selecting subsets of molecules according to their similarity toward specific collections of active compounds. To characterize the molecular similarity/diversity or to quantify the drug-like character of compounds the process of screening virtual and synthetic combinatorial libraries uses various classes of structural descriptors, such as structure keys, fingerprints, graph invariants, and various topological indices computed from atomic connectivities or graph distances. In this paper we present efficient algorithms for the computation of several distance-based topological indices of a molecular graph from the distance invariants of its subgraphs. The procedures utilize vertex- and edge-weighted molecular graphs representing organic compounds containing heteroatoms and multiple bonds. These equations offer an effective way to compute for weighted molecular graphs the Wiener index, even/odd Wiener index, and resistance-distance index. The proposed algorithms are especially efficient in computing distance-based structural descriptors in combinatorial libraries without actually generating the compounds, because only distance-based indices of the building blocks are needed to generate the topological indices of any compound assembled from the building blocks.

摘要

通过高效筛选具有高度结构多样性的分子文库,并根据分子与特定活性化合物集合的相似性选择分子子集,可显著加速药物先导发现这一昂贵且耗时的过程。为了表征分子的相似性/多样性或量化化合物的类药特性,筛选虚拟和合成组合文库的过程使用了各类结构描述符,如结构键、指纹、图不变量以及根据原子连接性或图距离计算出的各种拓扑指数。在本文中,我们提出了高效算法,可根据分子图子图的距离不变量计算该分子图的几个基于距离的拓扑指数。这些程序利用表示含有杂原子和多重键的有机化合物的顶点加权和边加权分子图。这些公式为计算加权分子图的维纳指数、偶/奇维纳指数和电阻距离指数提供了一种有效方法。所提出的算法在计算组合文库中基于距离的结构描述符时特别高效,因为无需实际生成化合物,只需构建模块的基于距离的指数就能生成由这些构建模块组装而成的任何化合物的拓扑指数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验