Marinari E, Pagnani A, Parisi G, Rácz Z
Dipartimento di Fisica, INFM and INFN, Università di Roma La Sapienza, P. A. Moro 2, 00185 Roma, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 2):026136. doi: 10.1103/PhysRevE.65.026136. Epub 2002 Jan 23.
Simulations of restricted solid-on-solid growth models are used to build the width distributions of d=2-5 dimensional Kardar-Parisi-Zhang (KPZ) interfaces. We find that the universal scaling function associated with the steady-state width distribution changes smoothly as d is increased, thus strongly suggesting that d=4 is not an upper critical dimension for the KPZ equation. The dimensional trends observed in the scaling functions indicate that the upper critical dimension is at infinity.
受限固-固生长模型的模拟被用于构建二维至五维 Kardar-Parisi-Zhang(KPZ)界面的宽度分布。我们发现,与稳态宽度分布相关的通用标度函数随着维度 d 的增加而平滑变化,从而有力地表明 d = 4 不是 KPZ 方程的上临界维度。在标度函数中观察到的维度趋势表明上临界维度为无穷大。