Addlesee Hugh A, Hunter C Neil
Robert Hill Institute for Photosynthesis and Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.
J Bacteriol. 2002 Mar;184(6):1578-86. doi: 10.1128/JB.184.6.1578-1586.2002.
The bchP gene product of Rhodobacter sphaeroides is responsible for the reduction of the isoprenoid moiety of bacteriochlorophyll (Bchl) from geranylgeraniol (GG) to phytol; here, we show that this enzyme also catalyzes the reduction of the isoprenoid moiety of bacteriopheophytin (Bphe). In contrast, we demonstrate that a newly identified homolog of this gene in Rhodospirillum rubrum encodes an enzyme, GG-Bphe reductase, capable of reducing the isoprenoid moiety of Bphe only. We propose that Rhodospirillum rubrum is a naturally occurring bchP mutant and that an insertion mutation may have been the initial cause of a partial loss of function. Normal BchP function can be restored to Rhodospirillum rubrum, creating a new transconjugant strain possessing Bchl esterified with phytol. We speculate on the requirement of Rhodospirillum rubrum for phytylated Bphe and on a potential link between the absence of LH2 and of phytylated Bchl from the wild-type bacterium. The identification of a second role for the fully functional BchP in catalyzing the synthesis of phytylated Bphe strongly suggests that homologs of this enzyme may be similarly responsible for the synthesis of phytylated pheophytin in organisms possessing photosystem 2. In addition to bchP, other members of a photosynthesis gene cluster were identified in Rhodospirillum rubrum, including a bchG gene, demonstrated to encode a functional Bchl synthetase by complementation of a Rhodobacter sphaeroides mutant.
球形红细菌的bchP基因产物负责将细菌叶绿素(Bchl)的类异戊二烯部分从香叶基香叶醇(GG)还原为叶绿醇;在此,我们表明该酶还催化细菌脱镁叶绿素(Bphe)的类异戊二烯部分的还原。相比之下,我们证明了在深红螺菌中该基因新鉴定的一个同源物编码一种酶,即GG - Bphe还原酶,其仅能够还原Bphe的类异戊二烯部分。我们提出深红螺菌是一种天然存在的bchP突变体,并且插入突变可能是功能部分丧失的最初原因。正常的BchP功能可以恢复到深红螺菌,从而产生一种新的转接合子菌株,其Bchl被叶绿醇酯化。我们推测了深红螺菌对叶绿醇化Bphe的需求以及野生型细菌中缺乏LH2和叶绿醇化Bchl之间的潜在联系。在催化叶绿醇化Bphe合成中完全功能性BchP的第二个作用的鉴定强烈表明,该酶的同源物可能同样负责具有光系统2的生物体中叶绿醇化脱镁叶绿素的合成。除了bchP之外,在深红螺菌中还鉴定了光合作用基因簇的其他成员,包括一个bchG基因,通过对球形红细菌突变体的互补证明其编码一种功能性Bchl合成酶。