Suppr超能文献

因果推断中的主分层

Principal stratification in causal inference.

作者信息

Frangakis Constantine E, Rubin Donald B

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, USA.

出版信息

Biometrics. 2002 Mar;58(1):21-9. doi: 10.1111/j.0006-341x.2002.00021.x.

Abstract

Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.

摘要

许多科学问题要求对治疗比较进行调整,以考虑治疗后的变量,但标准方法所依据的估计量并非因果效应。为解决这一缺陷,我们提出了一个通用框架,用于比较治疗,并对治疗后的变量进行调整,该框架基于主分层产生主效应。关于治疗后变量的主分层是根据正在比较的每种治疗下该治疗后变量的联合潜在值定义的受试者交叉分类。主效应是主层内的因果效应。主层的关键特性是它们不受治疗分配的影响,因此可以像任何治疗前协变量一样使用,例如年龄类别。因此,我们的主效应的核心特性是它们始终是因果效应,并且不会受到标准的治疗后调整估计量的复杂性的影响。我们简要讨论了这种主因果效应是最近三个对治疗后变量进行调整的应用之间的联系:(i)治疗不依从性,(ii)治疗不依从后缺失结局(退出),以及(iii)因死亡进行的删失。然后我们探讨替代或生物标志物终点的问题,在这个问题中,我们使用主因果效应表明,即使所有当前的替代定义完全正确,它们通常也没有作为治疗对结局的因果效应的理想解释。我们接着基于主分层和主因果效应制定估计量,并展示它们的优越性。

相似文献

1
Principal stratification in causal inference.
Biometrics. 2002 Mar;58(1):21-9. doi: 10.1111/j.0006-341x.2002.00021.x.
2
A refreshing account of principal stratification.
Int J Biostat. 2012;8(1). doi: 10.1515/1557-4679.1380.
3
Applying optimal model selection in principal stratification for causal inference.
Stat Med. 2013 May 20;32(11):1815-28. doi: 10.1002/sim.5649. Epub 2012 Oct 8.
4
Clarifying selection bias in cluster randomized trials.
Clin Trials. 2022 Feb;19(1):33-41. doi: 10.1177/17407745211056875. Epub 2021 Dec 11.
5
Multiply robust estimation of principal causal effects with noncompliance and survival outcomes.
Clin Trials. 2024 Oct;21(5):553-561. doi: 10.1177/17407745241251773. Epub 2024 May 30.
6
Commentary on "Principal stratification - a goal or a tool?" by Judea Pearl.
Int J Biostat. 2011;7(1):Article 36. doi: 10.2202/1557-4679.1341. Epub 2011 Sep 20.
7
Principal stratification and attribution prohibition: good ideas taken too far.
Int J Biostat. 2011;7(1):Article 35. doi: 10.2202/1557-4679.1367. Epub 2011 Sep 14.
8
Principal stratification analysis of noncompliance with time-to-event outcomes.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad016.
9
Accommodating missingness when assessing surrogacy via principal stratification.
Clin Trials. 2013;10(3):363-77. doi: 10.1177/1740774513479522. Epub 2013 Apr 3.

引用本文的文献

1
Elucidating some common biases in randomized controlled trials using directed acyclic graphs.
Eur J Epidemiol. 2025 Sep 11. doi: 10.1007/s10654-025-01298-7.
2
An Example to Illustrate Randomized Trial Estimands and Estimators.
Am Stat. 2025;79(3):383-392. doi: 10.1080/00031305.2025.2468399. Epub 2025 Apr 7.
3
Counternull sets in randomized experiments.
Am Stat. 2025;79(2):275-285. doi: 10.1080/00031305.2024.2432884. Epub 2025 Jan 17.
4
A MARGINAL STRUCTURAL MODEL FOR PARTIAL COMPLIANCE IN SMARTS.
Ann Appl Stat. 2024 Jun;18(2):905-921. doi: 10.1214/21-aoas1586. Epub 2024 Apr 5.
7
Vaccine Effects on In-hospital COVID-19 Outcomes.
Epidemiology. 2025 Sep 1;36(5):646-649. doi: 10.1097/EDE.0000000000001877. Epub 2025 Jun 17.
8
What randomization can and cannot guarantee.
Obs Stud. 2025 Apr 11;11(1):27-40. doi: 10.1353/obs.2025.a956839. eCollection 2025.
10
Surrogate Marker Evaluation: A Tutorial Using R.
Stat Med. 2025 May;44(10-12):e70048. doi: 10.1002/sim.70048.

本文引用的文献

2
Assessing the effect of an influenza vaccine in an encouragement design.
Biostatistics. 2000 Mar;1(1):69-88. doi: 10.1093/biostatistics/1.1.69.
3
The validation of surrogate endpoints in meta-analyses of randomized experiments.
Biostatistics. 2000 Mar;1(1):49-67. doi: 10.1093/biostatistics/1.1.49.
4
On meta-analytic assessment of surrogate outcomes.
Biostatistics. 2000 Sep;1(3):231-46. doi: 10.1093/biostatistics/1.3.231.
7
More powerful randomization-based p-values in double-blind trials with non-compliance.
Stat Med. 1998 Feb 15;17(3):371-85; discussion 387-9. doi: 10.1002/(sici)1097-0258(19980215)17:3<371::aid-sim768>3.0.co;2-o.
8
Correction for non-compliance in equivalence trials.
Stat Med. 1998 Feb 15;17(3):269-302; discussion 387-9. doi: 10.1002/(sici)1097-0258(19980215)17:3<269::aid-sim763>3.0.co;2-j.
9
Estimating the proportion of treatment effect explained by a surrogate marker.
Stat Med. 1997 Jul 15;16(13):1515-27. doi: 10.1002/(sici)1097-0258(19970715)16:13<1515::aid-sim572>3.0.co;2-1.
10
Surrogate end points in clinical trials: are we being misled?
Ann Intern Med. 1996 Oct 1;125(7):605-13. doi: 10.7326/0003-4819-125-7-199610010-00011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验