Suppr超能文献

疏水蛋白SC3通过两种结构中间体进行自组装。

Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates.

作者信息

de Vocht Marcel L, Reviakine Ilya, Ulrich Wolf-Peter, Bergsma-Schutter Wilma, Wösten Han A B, Vogel Horst, Brisson Alain, Wessels Joseph G H, Robillard George T

机构信息

Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

出版信息

Protein Sci. 2002 May;11(5):1199-205. doi: 10.1110/ps.4540102.

Abstract

Hydrophobins self assemble into amphipathic films at hydrophobic-hydrophilic interfaces. These proteins are involved in a broad range of processes in fungal development. We have studied the conformational changes that accompany the self-assembly of the hydrophobin SC3 with polarization-modulation infrared reflection absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and circular dichroism, and related them to changes in morphology as observed by electron microcopy. Three states of SC3 have been spectroscopically identified previously as follows: the monomeric state, the alpha-helical state that is formed upon binding to a hydrophobic solid, and the beta-sheet state, which is formed at the air-water interface. Here, we show that the formation of the beta-sheet state of SC3 proceeds via two intermediates. The first intermediate has an infrared spectrum indistinguishable from that of the alpha-helical state of SC3. The second intermediate is rich in beta-sheet structure and has a featureless appearance under the electron microscope. The end state has the same secondary structure, but is characterized by the familiar 10-nm-wide rodlets.

摘要

疏水蛋白在疏水-亲水界面处自组装形成两亲性膜。这些蛋白质参与真菌发育的广泛过程。我们利用偏振调制红外反射吸收光谱、衰减全反射傅里叶变换红外光谱和圆二色性研究了疏水蛋白SC3自组装过程中伴随的构象变化,并将其与电子显微镜观察到的形态变化相关联。SC3的三种状态先前已通过光谱鉴定如下:单体状态、与疏水固体结合时形成的α-螺旋状态以及在空气-水界面形成的β-折叠状态。在此,我们表明SC3的β-折叠状态的形成通过两个中间体进行。第一个中间体的红外光谱与SC3的α-螺旋状态的红外光谱无法区分。第二个中间体富含β-折叠结构,在电子显微镜下呈现无特征外观。最终状态具有相同的二级结构,但特征是熟悉的10纳米宽的杆状结构。

相似文献

1
Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates.
Protein Sci. 2002 May;11(5):1199-205. doi: 10.1110/ps.4540102.
4
Structural and functional role of the disulfide bridges in the hydrophobin SC3.
J Biol Chem. 2000 Sep 15;275(37):28428-32. doi: 10.1074/jbc.M000691200.
5
Hydrophobins, the fungal coat unravelled.
Biochim Biophys Acta. 2000 Sep 18;1469(2):79-86. doi: 10.1016/s0304-4157(00)00002-2.
6
Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution.
Biochim Biophys Acta. 2014 Jul;1844(7):1231-7. doi: 10.1016/j.bbapap.2014.04.003. Epub 2014 Apr 13.
9
Molecular dynamics study of the folding of hydrophobin SC3 at a hydrophilic/hydrophobic interface.
Biophys J. 2002 Jul;83(1):112-24. doi: 10.1016/S0006-3495(02)75153-9.
10
Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi.
J Mol Biol. 2018 Oct 12;430(20):3784-3801. doi: 10.1016/j.jmb.2018.07.025. Epub 2018 Aug 7.

引用本文的文献

4
Hydrophobins: multifunctional biosurfactants for interface engineering.
J Biol Eng. 2019 Jan 23;13:10. doi: 10.1186/s13036-018-0136-1. eCollection 2019.
5
Creating Surface Properties Using a Palette of Hydrophobins.
Materials (Basel). 2010 Sep 6;3(9):4607-4625. doi: 10.3390/ma3094607.
7
Hydrophobins--unique fungal proteins.
PLoS Pathog. 2012;8(5):e1002700. doi: 10.1371/journal.ppat.1002700. Epub 2012 May 31.
8
Crystallization and preliminary X-ray diffraction of the surfactant protein Lv-ranaspumin from the frog Leptodactylus vastus.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Mar 1;68(Pt 3):321-3. doi: 10.1107/S1744309112002679. Epub 2012 Feb 23.
9
Absence of repellents in Ustilago maydis induces genes encoding small secreted proteins.
Antonie Van Leeuwenhoek. 2011 Aug;100(2):219-29. doi: 10.1007/s10482-011-9581-2. Epub 2011 May 28.
10
Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus Beauveria bassiana in E. coli.
J Ind Microbiol Biotechnol. 2011 Feb;38(2):327-35. doi: 10.1007/s10295-010-0777-7. Epub 2010 Jul 17.

本文引用的文献

1
Interfacial Self-Assembly of a Fungal Hydrophobin into a Hydrophobic Rodlet Layer.
Plant Cell. 1993 Nov;5(11):1567-1574. doi: 10.1105/tpc.5.11.1567.
3
4
Spectroscopic evidence for amyloid-like interfacial self-assembly of hydrophobin Sc3.
Biochem Biophys Res Commun. 2001 Jan 12;280(1):212-5. doi: 10.1006/bbrc.2000.4098.
5
Structural and functional role of the disulfide bridges in the hydrophobin SC3.
J Biol Chem. 2000 Sep 15;275(37):28428-32. doi: 10.1074/jbc.M000691200.
7
Fungi in their own right.
Fungal Genet Biol. 1999 Jul-Aug;27(2-3):134-45. doi: 10.1006/fgbi.1999.1125.
8
Designing conditions for in vitro formation of amyloid protofilaments and fibrils.
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3590-4. doi: 10.1073/pnas.96.7.3590.
9
Polarization-modulated FTIR spectroscopy of lipid/gramicidin monolayers at the air/water interface.
Biophys J. 1999 Mar;76(3):1639-47. doi: 10.1016/S0006-3495(99)77323-6.
10
How a fungus escapes the water to grow into the air.
Curr Biol. 1999 Jan 28;9(2):85-8. doi: 10.1016/s0960-9822(99)80019-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验