Suppr超能文献

The effect of volume currents due to myocardial anisotropy on body surface potentials.

作者信息

Ramon Ceon, Schimpf Paul, Wang Yanqun, Haueisen Jens, Ishimaru Akira

机构信息

Department of Electrical Engineering, University of Washington, Seattle, USA.

出版信息

Phys Med Biol. 2002 Apr 7;47(7):1167-84. doi: 10.1088/0031-9155/47/7/312.

Abstract

Changes in anterior and posterior body surface potential maps (BSPMs) due to myocardial anisotropy were examined using a highly heterogeneous finite element model of an adult male subject constructed from segmented magnetic resonance images. A total of 23 different tissue types were identified in the whole torso. The myocardial fibre orientations in the human heart wall were mapped from the fibre orientations of a canine heart which are available in the literature using deformable mapping techniques. The current and potential distributions in the whole torso were computed using dipolar sources in the septum, apical area, left ventricular wall or right ventricular wall. For each dipole x, y, z orientations were studied. An adaptive finite element solver was used to compute currents and potential distributions in the whole torso with an element size of 0.78 x 0.78 x 3 mm in the myocardium and larger elements in other parts of the torso. For each dipole position two cases were studied. In one case the myocardium was isotropic and in the other it was anisotropic. It was found that BSPMs showed a very notable difference between the isotropic and the anisotropic myocardium for all dipole positions with the largest difference for the apical dipoles. The correlation coefficients for the BSPMs between the isotropic and anisotropic cases ranged from 0.83 for an apical dipole to 0.99 for an RV wall dipole. These results suggest that myocardial fibre anisotropy plays an important role in determining the body surface potentials.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验