Suppr超能文献

糖组学的分离技术

Separation technologies for glycomics.

作者信息

Hirabayashi Jun, Kasai Ken-ichi

机构信息

Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan.

出版信息

J Chromatogr B Analyt Technol Biomed Life Sci. 2002 May 5;771(1-2):67-87. doi: 10.1016/s1570-0232(02)00057-0.

Abstract

Progress in genome projects has provided us with fundamentals on genetic information; however, the functions of a large number of genes remain to be elucidated. To understand the in vivo functions of eukaryotic genes, it is essential to grasp the features of their post-translational modifications. Among them, protein glycosylation is a central issue to be discussed, considering the predominant roles of glycoproteins in cell-cell and cell-substratum recognition events in multicellular organisms. In this context, it is necessary to establish a core strategy for analyzing glycosylated proteins under the concept of the "glycome" [Trends Glycosci. Glycotechnol. 12 (2000) 1]. Though the term glycome should be defined, in analogy to the genome and proteome, as "a whole set of glycans produced in a single organism", here we propose a glycome project specifically focusing on glycoproteins. Principal objectives in the project are to identify: (1) which genes encode glycoproteins (i.e. genome information); (2) which sites among potential glycosylation sites are actually glycosylated (i.e. glycosylation site information); (3) what are the structures of glycans (i.e. structural information); and (4) what are the effects (functions) of glycosylation (functional information). For these purposes, two affinity technologies have been introduced. One is named the "glyco-catch method" to identify genes encoding glycoproteins [Proteomics 1 (2001) 295], and the other is the recently reinforced "frontal affinity chromatography" [J. Chromatogr. A 890 (2000) 261]. By the former method, genes that encode glycoproteins as well as glycosylation sites are systematically identified by the efficient combination of conventional lectin-affinity chromatography and contemporary in silico database searching. The following three actions have been devised for rapid and systematic characterization of glycans: (1) mass spectrometry to acquire exact mass information; (2) 2-D/3-D mapping to obtain refined chemical information; and (3) reinforced frontal affinity chromatography to determine affinity constants (K(a)-values) for a set of lectins. Pyridylaminated glycans are used throughout the characterization processes. In this review, the concept and strategy of glycomic approaches are described referring to the on-going glycome project focused on the nematode Caenorhabditis elegans.

摘要

基因组计划的进展为我们提供了遗传信息的基础;然而,大量基因的功能仍有待阐明。为了了解真核基因的体内功能,掌握其翻译后修饰的特征至关重要。其中,考虑到糖蛋白在多细胞生物的细胞间和细胞与基质识别事件中的主要作用,蛋白质糖基化是一个需要讨论的核心问题。在这种情况下,有必要在“糖组”的概念下建立一种分析糖基化蛋白的核心策略[《糖科学与糖技术趋势》12 (2000) 1]。尽管糖组这个术语应类似于基因组和蛋白质组被定义为“单个生物体中产生的一整套聚糖”,但在此我们提出一个专门针对糖蛋白的糖组计划。该计划的主要目标是确定:(1) 哪些基因编码糖蛋白(即基因组信息);(2) 潜在糖基化位点中哪些位点实际发生了糖基化(即糖基化位点信息);(3) 聚糖的结构是什么(即结构信息);以及(4) 糖基化的影响(功能)是什么(功能信息)。为了实现这些目标,引入了两种亲和技术。一种被称为“糖捕获法”,用于识别编码糖蛋白的基因[《蛋白质组学》1 (2001) 295],另一种是最近得到强化的“前沿亲和色谱法”[《色谱杂志A》890 (2000) 261]。通过前一种方法,通过传统凝集素亲和色谱法与当代计算机数据库搜索的有效结合,系统地识别编码糖蛋白的基因以及糖基化位点。为了对聚糖进行快速且系统的表征,设计了以下三个步骤:(1) 质谱分析以获取精确的质量信息;(2) 二维/三维图谱分析以获得精确的化学信息;以及(3) 强化前沿亲和色谱法以确定一组凝集素的亲和常数(K(a)值)。在整个表征过程中都使用了吡啶基化聚糖。在这篇综述中,参考正在进行的以线虫秀丽隐杆线虫为重点的糖组计划,描述了糖组学方法的概念和策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验