Suppr超能文献

23S核糖体RNA辅助的细胞质苹果酸脱氢酶折叠与其自身折叠明显不同。

23S rRNA assisted folding of cytoplasmic malate dehydrogenase is distinctly different from its self-folding.

作者信息

Sanyal Suparna Chandra, Pal Saumen, Chowdhury Saheli, DasGupta Chanchal

机构信息

Department of Biophysics, Molecular Biology and Genetics, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.

出版信息

Nucleic Acids Res. 2002 Jun 1;30(11):2390-7. doi: 10.1093/nar/30.11.2390.

Abstract

The role of the 50S particle of Escherichia coli ribosome and its 23S rRNA in the refolding and subunit association of dimeric porcine heart cytoplasmic malate dehydrogenase (s-MDH) has been investigated. The self-reconstitution of s-MDH is governed by two parallel pathways representing the folding of the inactive monomeric and the dimeric intermediates. However, in the presence of these folding modulators, only one first order kinetics was observed. To understand whether this involved the folding of the monomers or the dimers, subunit association of s-MDH was studied using fluorescein-5-isothiocyanate-rhodamine-isothiocyanate (FITC-RITC) fluorescence energy transfer and chemical cross-linking with gluteraldehyde. The observation suggests that during refolding the interaction of the unstructured monomers of s-MDH with these ribosomal folding modulators leads to very fast formation of structured monomers that immediately dimerise. These inactive dimers then fold to the native ones, which is the rate limiting step in 23S or 50S assisted refolding of s-MDH. Furthermore, the sequential action of the two fragments of domain V of 23S rRNA has been investigated in order to elucidate the mechanism. The central loop of domain V of 23S rRNA (RNA1) traps the monomeric intermediates, and when they are released by the upper stem-loop region of the domain V of 23S rRNA (RNA2) they are already structured enough to form dimeric intermediates which are directed towards the proper folding pathway.

摘要

研究了大肠杆菌核糖体50S颗粒及其23S rRNA在猪心细胞质苹果酸脱氢酶(s-MDH)二聚体的重折叠和亚基缔合中的作用。s-MDH的自我重折叠由两条平行途径控制,分别代表无活性单体和二聚体中间体的折叠。然而,在这些折叠调节剂存在的情况下,只观察到一级动力学。为了了解这是否涉及单体或二聚体的折叠,使用异硫氰酸荧光素-异硫氰酸罗丹明(FITC-RITC)荧光能量转移和戊二醛化学交联研究了s-MDH的亚基缔合。观察结果表明,在重折叠过程中,s-MDH的无结构单体与这些核糖体折叠调节剂的相互作用导致非常快速地形成立即二聚化的结构化单体。这些无活性二聚体然后折叠成天然二聚体,这是23S或50S辅助s-MDH重折叠中的限速步骤。此外,还研究了23S rRNA结构域V的两个片段的顺序作用,以阐明其机制。23S rRNA结构域V的中央环(RNA1)捕获单体中间体,当它们被23S rRNA结构域V的上部茎环区域(RNA2)释放时,它们已经足够结构化以形成二聚体中间体,这些中间体被导向正确的折叠途径。

相似文献

1
23S rRNA assisted folding of cytoplasmic malate dehydrogenase is distinctly different from its self-folding.
Nucleic Acids Res. 2002 Jun 1;30(11):2390-7. doi: 10.1093/nar/30.11.2390.
4
Reactivation of denatured proteins by domain V of bacterial 23S rRNA.
Nucleic Acids Res. 1997 Dec 15;25(24):5047-51. doi: 10.1093/nar/25.24.5047.
5
The folding of dimeric cytoplasmic malate dehydrogenase. Equilibrium and kinetic studies.
Eur J Biochem. 2002 Aug;269(15):3856-66. doi: 10.1046/j.1432-1033.2002.03085.x.
7
Complementary role of two fragments of domain V of 23 S ribosomal RNA in protein folding.
J Biol Chem. 1999 Nov 12;274(46):32771-7. doi: 10.1074/jbc.274.46.32771.
10
Characterization of a separate small domain derived from the 5' end of 23S rRNA of an alpha-proteobacterium.
Nucleic Acids Res. 1999 Nov 1;27(21):4241-50. doi: 10.1093/nar/27.21.4241.

引用本文的文献

1
Ribosomal RNA Modulates Aggregation of the Prion Protein HET-s.
Int J Mol Sci. 2020 Sep 1;21(17):6340. doi: 10.3390/ijms21176340.
2
Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain.
J Biol Chem. 2017 Jun 2;292(22):9345-9357. doi: 10.1074/jbc.M116.762096. Epub 2017 Apr 18.
3
Protein folding activity of the ribosome (PFAR) -- a target for antiprion compounds.
Viruses. 2014 Oct 23;6(10):3907-24. doi: 10.3390/v6103907.
4
The antiprion compound 6-aminophenanthridine inhibits the protein folding activity of the ribosome by direct competition.
J Biol Chem. 2013 Jun 28;288(26):19081-9. doi: 10.1074/jbc.M113.466748. Epub 2013 May 14.
5
Birth, life and death of nascent polypeptide chains.
Biotechnol J. 2011 Jun;6(6):623-40. doi: 10.1002/biot.201000327. Epub 2011 Apr 29.
7
Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a Nonnative carbon source, L-1,2-propanediol.
Appl Environ Microbiol. 2010 Jul;76(13):4158-68. doi: 10.1128/AEM.00373-10. Epub 2010 Apr 30.
9
Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs.
PLoS One. 2008 May 14;3(5):e2174. doi: 10.1371/journal.pone.0002174.
10
LocateP: genome-scale subcellular-location predictor for bacterial proteins.
BMC Bioinformatics. 2008 Mar 27;9:173. doi: 10.1186/1471-2105-9-173.

本文引用的文献

1
Cotranslational folding--omnia mea mecum porto?
Int J Biochem Cell Biol. 2001 Jun;33(6):541-53. doi: 10.1016/s1357-2725(01)00044-9.
2
A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates.
J Biol Chem. 2001 Jul 6;276(27):25411-20. doi: 10.1074/jbc.M008490200. Epub 2001 Apr 23.
3
The structural basis of ribosome activity in peptide bond synthesis.
Science. 2000 Aug 11;289(5481):920-30. doi: 10.1126/science.289.5481.920.
4
Protein folding in vivo: the importance of ribosomes.
Nat Cell Biol. 1999 Oct;1(6):E154-5. doi: 10.1038/14107.
5
Complementary role of two fragments of domain V of 23 S ribosomal RNA in protein folding.
J Biol Chem. 1999 Nov 12;274(46):32771-7. doi: 10.1074/jbc.274.46.32771.
6
Protein folding in Escherichia coli: role of 23S ribosomal RNA.
Biochim Biophys Acta. 1999 Jan 11;1429(2):293-8. doi: 10.1016/s0167-4838(98)00179-4.
8
Reactivation of denatured proteins by domain V of bacterial 23S rRNA.
Nucleic Acids Res. 1997 Dec 15;25(24):5047-51. doi: 10.1093/nar/25.24.5047.
9
Ribosomes and ribosomal RNA as chaperones for folding of proteins.
Fold Des. 1997;2(2):101-8. doi: 10.1016/S1359-0278(97)00014-X.
10
Reactivation of denatured proteins by 23S ribosomal RNA: role of domain V.
Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8284-7. doi: 10.1073/pnas.93.16.8284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验