Suppr超能文献

通过有限蛋白酶解和蛋白质计算切割鉴定的蛋白质片段的比较。

Comparison of protein fragments identified by limited proteolysis and by computational cutting of proteins.

作者信息

Tsai Chung-Jung, Polverino de Laureto Patrizia, Fontana Angelo, Nussinov Ruth

机构信息

Laboratory of Experimental and Computational Biology, National Cancer Institute, Frederick, MD 21702, USA.

出版信息

Protein Sci. 2002 Jul;11(7):1753-70. doi: 10.1110/ps.4100102.

Abstract

Here we present a comparison between protein fragments produced by limited proteolysis and those identified by computational cutting based on the building block folding model. The principles upon which the two methods are based are different. Limited proteolysis of natively folded proteins occurs at flexible sites and never at the level of chain segments of regular secondary structure such as alpha-helices. Therefore, the targets for limited proteolysis are locally unfolded regions. In contrast, the computational cutting algorithm considers the compactness of the fragments, their nonpolar buried surface area, and their isolatedness, that is, the surface area which was buried prior to the cutting and becomes exposed subsequently. Despite the different criteria, there is an overall correspondence between sites or regions of limited proteolysis with those identified by computational cutting. The computational cutting method has been applied to several model proteins for which detailed limited proteolysis data are available, namely apomyoglobin, cytochrome c, ribonuclease A, alpha-lactalbumin, and thermolysin. As expected, more cuts are obtained computationally than experimentally and the agreement is better when a number of proteolytic enzymes are used. For example, cytochrome c is cleaved by thermolysin at 56-57, 45-46, and at 80-81, and by proteinase K at 48-49 and 50-51. Incubation of the noncovalent and native-like complex of cytochrome c fragments 1-56 and 57-104 with proteinase K yielded the gapped protein species 1-48/57-104 and finally 1-40/57-104. Computational cutting of cytochrome c reproduced the major experimental observations, with cuts at 47, 64-65 or 65-66 and 80-81 and an unstable 32-47 region not assigned to any building block. The next step, not addressed in this work, is to probe the ability of the generated fragments to fold independently. Since both the computational algorithm and limited proteolysis attempt to dissect the protein folding problem, the general agreement between the two procedures is gratifying. This consistency allows us to propose the use of limited proteolysis to produce protein fragments that can adopt an independent folding and, therefore, to study folding intermediates. The results of the present study appear to validate the building block folding model and are in line with the proposal that protein folding is a hierarchical process, where parts constituting local minima of energy fold first, with their subsequent association and mutual stabilization to finally yield the global fold.

摘要

在此,我们对有限蛋白酶解产生的蛋白质片段与基于构建块折叠模型通过计算切割鉴定出的蛋白质片段进行了比较。这两种方法所依据的原理不同。天然折叠蛋白质的有限蛋白酶解发生在柔性位点,而绝不会发生在规则二级结构的链段水平,如α - 螺旋。因此,有限蛋白酶解的靶点是局部未折叠区域。相比之下,计算切割算法考虑片段的紧密性、它们的非极性埋藏表面积以及它们的孤立性,即切割前被埋藏且随后暴露的表面积。尽管标准不同,但有限蛋白酶解的位点或区域与通过计算切割鉴定出的位点或区域总体上存在对应关系。计算切割方法已应用于几种有详细有限蛋白酶解数据的模型蛋白,即脱辅基肌红蛋白、细胞色素c核糖核酸酶A、α - 乳白蛋白和嗜热菌蛋白酶。正如预期的那样,计算得到的切割位点比实验得到的更多,并且当使用多种蛋白酶时一致性更好。例如,细胞色素c被嗜热菌蛋白酶在56 - 57、45 - 46和80 - 81处切割,被蛋白酶K在48 - 49和50 - 51处切割。细胞色素c片段1 - 56和57 - 104的非共价且类似天然的复合物与蛋白酶K孵育产生了有缺口的蛋白质物种1 - 48/57 - 104,最终产生1 - 40/57 - 104。细胞色素c的计算切割重现了主要的实验观察结果,在47、64 - 65或65 - 66以及80 - 81处有切割,并且有一个不稳定的32 - 47区域未分配到任何构建块。下一步,本工作未涉及的是探究所产生的片段独立折叠的能力。由于计算算法和有限蛋白酶解都试图剖析蛋白质折叠问题,这两种方法之间的总体一致性令人满意。这种一致性使我们能够提出使用有限蛋白酶解来产生能够进行独立折叠的蛋白质片段,从而研究折叠中间体。本研究结果似乎验证了构建块折叠模型,并且与蛋白质折叠是一个分级过程的提议一致,在这个过程中,构成局部能量最小值的部分首先折叠,随后它们相互结合并稳定,最终产生全局折叠。

相似文献

5
Probing protein structure by limited proteolysis.
Acta Biochim Pol. 2004;51(2):299-321.
7
Local unfolding is required for the site-specific protein modification by transglutaminase.
Biochemistry. 2012 Oct 30;51(43):8679-89. doi: 10.1021/bi301005z. Epub 2012 Oct 19.
8
Probing the partly folded states of proteins by limited proteolysis.
Fold Des. 1997;2(2):R17-26. doi: 10.1016/S1359-0278(97)00010-2.
10
Reducing the computational complexity of protein folding via fragment folding and assembly.
Protein Sci. 2003 Jun;12(6):1177-87. doi: 10.1110/ps.0232903.

引用本文的文献

1
Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data.
Curr Protein Pept Sci. 2017;18(9):905-913. doi: 10.2174/1389203717666160724211231.
2
A modular perspective of protein structures: application to fragment based loop modeling.
Methods Mol Biol. 2013;932:141-58. doi: 10.1007/978-1-62703-065-6_9.
3
Differential stabilities of alternative exon-skipped rod motifs of dystrophin.
Biochim Biophys Acta. 2009 Jun;1794(6):921-8. doi: 10.1016/j.bbapap.2009.02.016. Epub 2009 Mar 12.
4
An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro.
J Biol Chem. 2008 Nov 7;283(45):31142-52. doi: 10.1074/jbc.M805024200. Epub 2008 Sep 8.
6
p25alpha is flexible but natively folded and binds tubulin with oligomeric stoichiometry.
Protein Sci. 2005 Jun;14(6):1396-409. doi: 10.1110/ps.041285605. Epub 2005 May 9.
7
In silico protein design by combinatorial assembly of protein building blocks.
Protein Sci. 2004 Oct;13(10):2753-65. doi: 10.1110/ps.04774004.
8
Small-world communication of residues and significance for protein dynamics.
Biophys J. 2004 Jan;86(1 Pt 1):85-91. doi: 10.1016/S0006-3495(04)74086-2.
9
Reducing the computational complexity of protein folding via fragment folding and assembly.
Protein Sci. 2003 Jun;12(6):1177-87. doi: 10.1110/ps.0232903.

本文引用的文献

1
ON THE ENZYMIC ACTIVITY OF SUBTILISIN-MODIFIED RIBONUCLEASE.
Proc Natl Acad Sci U S A. 1958 Feb;44(2):162-6. doi: 10.1073/pnas.44.2.162.
5
Protein folding and function: the N-terminal fragment in adenylate kinase.
Biophys J. 2001 May;80(5):2439-54. doi: 10.1016/S0006-3495(01)76213-3.
6
Binding and folding: in search of intramolecular chaperone-like building block fragments.
Protein Eng. 2000 Sep;13(9):617-27. doi: 10.1093/protein/13.9.617.
7
Anatomy of protein structures: visualizing how a one-dimensional protein chain folds into a three-dimensional shape.
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12038-43. doi: 10.1073/pnas.97.22.12038.
8
Comparison of equilibrium and kinetic approaches for determining protein folding mechanisms.
Adv Protein Chem. 2000;53:283-328. doi: 10.1016/s0065-3233(00)53006-x.
9
Role of the molten globule state in protein folding.
Adv Protein Chem. 2000;53:209-82. doi: 10.1016/s0065-3233(00)53005-8.
10
Autonomous protein folding units.
Adv Protein Chem. 2000;53:1-47. doi: 10.1016/s0065-3233(00)53001-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验