Xue Tian, Marbán Eduardo, Li Ronald A
Institute of Molecular Cardiobiology, The Johns Hopkins University School of Medicine, Baltimore, Md 21205, USA.
Circ Res. 2002 Jun 28;90(12):1267-73. doi: 10.1161/01.res.0000024390.97889.c6.
I(f), a diastolic depolarizing current activated by hyperpolarization, is a key player in cardiac pacing. Despite the fact that I(f) has been known for over 20 years, the encoding genes, namely HCN1 to 4, have only recently been identified. Functional data imply that different HCN isoforms may coassemble to form heteromeric channel complexes, but little direct evidence is available. Subunit stoichiometry is also unknown. Although the pore region of HCN channels contains the glycine-tyrosine-glycine (GYG) signature motif found in K+-selective channels, they permeate both Na+ and K+. In the present study, we probed the functional importance of the GYG selectivity motif in pacemaker channels by replacing this triplet in HCN1 with alanines (GYG(349-351)AAA or HCN1-AAA). HCN1-AAA did not yield functional currents; coexpression of HCN1-AAA with wild-type (WT) HCN1 suppressed normal channel activity in a dominant-negative manner (55.2+/-3.2%, 68.3+/-4.3%, 78.7+/-1.6%, 91.7+/-0.8%, and 97.9+/-0.2% current reduction at -140 mV for WT:AAA cRNA ratios of 4:1, 3:1, 2:1, 1:1, and 1:2, respectively) without affecting gating (steady-state activation, activation and deactivation kinetics) or permeation (reversal potential) properties. HCN1-AAA coexpression, however, did not alter the expressed current amplitudes of Kv1.4 and Kv2.1 channels, indicating that its suppressive effect was channel-specific. Statistical analysis reveals that a single HCN channel is composed of 4 monomeric subunits. Interestingly, HCN1-AAA also inhibited HCN2 in a dominant-negative manner with the same efficacy. We conclude that the GYG motif is a critical determinant of ion permeation for HCN channels, and that HCN1 and HCN2 readily coassemble to form heterotetrameric complexes.
I(f)是一种由超极化激活的舒张期去极化电流,是心脏起搏的关键因素。尽管I(f)已被发现20多年,但编码基因,即HCN1至HCN4,直到最近才被确定。功能数据表明,不同的HCN亚型可能共同组装形成异源通道复合物,但几乎没有直接证据。亚基化学计量也未知。虽然HCN通道的孔区域包含在K⁺选择性通道中发现的甘氨酸 - 酪氨酸 - 甘氨酸(GYG)特征基序,但它们对Na⁺和K⁺都有通透性。在本研究中,我们通过将HCN1中的这个三联体替换为丙氨酸(GYG(349 - 351)AAA或HCN1 - AAA)来探究GYG选择性基序在起搏通道中的功能重要性。HCN1 - AAA未产生功能性电流;HCN1 - AAA与野生型(WT)HCN1共表达以显性负性方式抑制正常通道活性(对于WT:AAA cRNA比例分别为4:1、3:1、2:1、1:1和1:2时,在 - 140 mV处电流减少分别为55.2±3.2%、68.3±4.3%、78.7±1.6%、91.7±0.8%和97.9±0.2%),而不影响门控(稳态激活、激活和失活动力学)或通透(反转电位)特性。然而,HCN1 - AAA共表达并未改变Kv1.4和Kv2.1通道的表达电流幅度,表明其抑制作用具有通道特异性。统计分析表明,单个HCN通道由四个单体亚基组成。有趣的是,HCN1 - AAA也以相同的效力以显性负性方式抑制HCN2。我们得出结论,GYG基序是HCN通道离子通透的关键决定因素,并且HCN1和HCN2很容易共同组装形成异源四聚体复合物。