Sterne Jonathan A C, Jüni Peter, Schulz Kenneth F, Altman Douglas G, Bartlett Christopher, Egger Matthias
MRC Health Services Research Collaboration, Department of Social Medicine, University of Bristol, UK.
Stat Med. 2002 Jun 15;21(11):1513-24. doi: 10.1002/sim.1184.
Biases in systematic reviews and meta-analyses may be examined in 'meta-epidemiological' studies, in which the influence of trial characteristics such as measures of study quality on treatment effect estimates is explored. Published studies to date have analysed data from collections of meta-analyses with binary outcomes, using logistic regression models that assume that there is no between- or within-meta-analysis heterogeneity. Using data from a study of publication bias (39 meta-analyses, 394 published and 88 unpublished trials) and language bias (29 meta-analyses, 297 English language trials and 52 non-English language trials), we compare results from logistic regression models, with and without robust standard errors to allow for clustering on meta-analysis, with results using a 'meta-meta-analytic' approach that can allow for between- and within-meta-analysis heterogeneity. We also consider how to allow for the confounding effects of different trial characteristics. We show that both within- and between meta-analysis heterogeneity may be of importance in the analysis of meta-epidemiological studies, and that confounding exists between the effects of publication status and trial quality.
系统评价和荟萃分析中的偏倚可在“元流行病学”研究中进行检验,这类研究探讨诸如研究质量衡量指标等试验特征对治疗效果估计值的影响。迄今为止,已发表的研究分析了来自二元结局荟萃分析集合的数据,使用的逻辑回归模型假定荟萃分析之间或内部不存在异质性。利用一项关于发表偏倚(39项荟萃分析、394项已发表试验和88项未发表试验)和语言偏倚(29项荟萃分析、297项英语试验和52项非英语试验)研究的数据,我们比较了逻辑回归模型的结果,该模型有和没有稳健标准误以考虑荟萃分析中的聚类情况,同时与使用“元荟萃分析”方法的结果进行比较,该方法可考虑荟萃分析之间和内部的异质性。我们还考虑了如何处理不同试验特征的混杂效应。我们表明,荟萃分析内部和之间的异质性在元流行病学研究分析中可能都很重要,并且发表状态和试验质量的效应之间存在混杂。