Logothetis Nikos, Merkle Hellmut, Augath Mark, Trinath Torsten, Ugurbil Kâmil
Max Planck Institute for Biological Cybernetics, Spemannstr. 38, Tuebingen, Germany.
Neuron. 2002 Jul 18;35(2):227-42. doi: 10.1016/s0896-6273(02)00775-4.
Spatiotemporally resolved functional MRI (fMRI) in animals can reveal how wide-spread neural networks are organized and accompanying electrophysiological recordings can show how small neural assemblies contribute to this organization. Here we present a novel technique that yields high-resolution structural and functional images of the monkey brain with small, tissue-compatible, intraosteally implantable radiofrequency coils. Voxel sizes as small as 0.0113 microl with high signal-to-noise and contrast-to-noise ratios were obtained, revealing both structural and functional cortical architecture in great detail. Up to a certain point, contrast sensitivity increased with decreasing voxel size, probably because of the decreased partial volume effects. Spatial specificity was demonstrated by the lamina-specific activation in experiments comparing responses to moving and flickering stimuli. The implications of this technique for combined fMRI/electrophysiology experiments and its limitations in terms of spatial coverage are discussed.
动物体内的时空分辨功能磁共振成像(fMRI)能够揭示广泛神经网络的组织方式,同时伴随的电生理记录可以显示小型神经组件对这种组织方式的贡献。在此,我们展示了一种新技术,该技术利用小型、组织兼容、可植入骨内的射频线圈,生成猴子大脑的高分辨率结构和功能图像。获得了体素大小低至0.0113微升且具有高信噪比和对比噪声比的图像,极其详细地揭示了皮质的结构和功能架构。在一定程度上,对比敏感度随着体素大小的减小而增加,这可能是由于部分容积效应降低所致。在比较对移动和闪烁刺激的反应的实验中,通过层特异性激活证明了空间特异性。本文讨论了该技术在功能磁共振成像/电生理联合实验中的意义及其在空间覆盖方面的局限性。