Suppr超能文献

如高迁移率族蛋白1的研究所示,p53高效特异性结合DNA需要其中心结构域和C端结构域。

Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein.

作者信息

McKinney Kristine, Prives Carol

机构信息

Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

出版信息

Mol Cell Biol. 2002 Oct;22(19):6797-808. doi: 10.1128/MCB.22.19.6797-6808.2002.

Abstract

The nonhistone chromosomal protein high-mobility group 1 protein (HMG-1/HMGB1) can serve as an activator of p53 sequence-specific DNA binding (L. Jayaraman, N. C. Moorthy, K. G. Murthy, J. L. Manley, M. Bustin, and C. Prives, Genes Dev. 12:462-472, 1998). HMGB1 is capable of interacting with DNA in a non-sequence-specific manner and causes a significant bend in the DNA helix. Since p53 requires a significant bend in the target site, we examined whether DNA bending by HMGB1 may be involved in its enhancement of p53 sequence-specific binding. Accordingly, a 66-bp oligonucleonucleotide containing a p53 binding site was locked in a bent conformation by ligating its ends to form a microcircle. Indeed, p53 had a dramatically greater affinity for the microcircle than for the linear 66-bp DNA. Moreover, HMGB1 augmented binding to the linear DNA but not to the microcircle, suggesting that HMGB1 works by providing prebent DNA to p53. p53 contains a central core sequence-specific DNA binding region and a C-terminal region that recognizes various forms of DNA non-sequence specifically. The p53 C terminus has also been shown to serve as an autoinhibitor of core-DNA interactions. Remarkably, although the p53 C terminus inhibited p53 binding to the linear DNA, it was required for the increased affinity of p53 for the microcircle. Thus, depending on the DNA structure, the p53 C terminus can serve as a negative or a positive regulator of p53 binding to the same sequence and length of DNA. We propose that both DNA binding domains of p53 cooperate to recognize sequence and structure in genomic DNA and that HMGB1 can help to provide the optimal DNA structure for p53.

摘要

非组蛋白染色体蛋白高迁移率族1蛋白(HMG-1/HMGB1)可作为p53序列特异性DNA结合的激活剂(L. Jayaraman、N. C. Moorthy、K. G. Murthy、J. L. Manley、M. Bustin和C. Prives,《基因与发育》12:462 - 472,1998年)。HMGB1能够以非序列特异性方式与DNA相互作用,并使DNA螺旋产生显著弯曲。由于p53需要靶位点有显著弯曲,我们研究了HMGB1引起的DNA弯曲是否参与其对p53序列特异性结合的增强作用。因此,通过连接其末端形成一个微环,将一个含有p53结合位点的66个碱基对的寡核苷酸锁定在弯曲构象中。事实上,p53对微环的亲和力比对线性66个碱基对的DNA的亲和力显著更高。此外,HMGB1增强了对线性DNA的结合,但对微环没有增强作用,这表明HMGB1通过为p53提供预弯曲的DNA起作用。p53包含一个中央核心序列特异性DNA结合区域和一个C末端区域,该区域能非序列特异性地识别各种形式的DNA。p53的C末端也已被证明可作为核心-DNA相互作用的自抑制剂。值得注意的是,尽管p53的C末端抑制p53与线性DNA的结合,但它是p53对微环亲和力增加所必需的。因此,根据DNA结构,p53的C末端可以作为p53与相同序列和长度的DNA结合的负调节因子或正调节因子。我们提出,p53的两个DNA结合结构域协同作用以识别基因组DNA中的序列和结构,并且HMGB1可以帮助为p53提供最佳的DNA结构。

相似文献

2
High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops.
Biochemistry. 2004 Jun 8;43(22):7215-25. doi: 10.1021/bi049928k.
3
HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.
Biochim Biophys Acta Gene Regul Mech. 2018 Mar;1861(3):200-210. doi: 10.1016/j.bbagrm.2018.02.002. Epub 2018 Feb 6.
4
HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail.
Structure. 2012 Dec 5;20(12):2014-24. doi: 10.1016/j.str.2012.09.004. Epub 2012 Oct 11.
5
The HMGB1 C-Terminal Tail Regulates DNA Bending.
J Mol Biol. 2016 Oct 9;428(20):4060-4072. doi: 10.1016/j.jmb.2016.08.018. Epub 2016 Aug 21.
6
HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences.
J Biol Chem. 2002 Mar 1;277(9):7021-8. doi: 10.1074/jbc.M108417200. Epub 2001 Dec 17.
7
Two high-mobility group box domains act together to underwind and kink DNA.
Acta Crystallogr D Biol Crystallogr. 2015 Jul;71(Pt 7):1423-32. doi: 10.1107/S1399004715007452. Epub 2015 Jun 30.
9
Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops.
J Mol Biol. 2005 Nov 4;353(4):822-37. doi: 10.1016/j.jmb.2005.08.073. Epub 2005 Sep 20.
10
Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain.
J Biol Chem. 2002 Oct 25;277(43):41192-203. doi: 10.1074/jbc.M202344200. Epub 2002 Aug 8.

引用本文的文献

1
Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines.
ACS Bio Med Chem Au. 2025 Feb 12;5(2):283-298. doi: 10.1021/acsbiomedchemau.4c00124. eCollection 2025 Apr 16.
2
Structure and Functions of HMGB3 Protein.
Int J Mol Sci. 2024 Jul 12;25(14):7656. doi: 10.3390/ijms25147656.
3
Structure and Functions of HMGB2 Protein.
Int J Mol Sci. 2023 May 5;24(9):8334. doi: 10.3390/ijms24098334.
4
A tetramerization domain in prokaryotic and eukaryotic transcription regulators homologous to p53.
Acta Crystallogr D Struct Biol. 2023 Mar 1;79(Pt 3):259-267. doi: 10.1107/S2059798323001298.
5
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review.
Int J Mol Sci. 2022 Dec 23;24(1):266. doi: 10.3390/ijms24010266.
6
The role of high mobility group protein B3 (HMGB3) in tumor proliferation and drug resistance.
Mol Cell Biochem. 2021 Apr;476(4):1729-1739. doi: 10.1007/s11010-020-04015-y. Epub 2021 Jan 11.
7
Functional Diversity of Non-Histone Chromosomal Protein HmgB1.
Int J Mol Sci. 2020 Oct 26;21(21):7948. doi: 10.3390/ijms21217948.
9
Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses.
DNA Repair (Amst). 2019 Nov;83:102701. doi: 10.1016/j.dnarep.2019.102701. Epub 2019 Sep 16.
10

本文引用的文献

2
Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):95-100. doi: 10.1073/pnas.012283399. Epub 2001 Dec 26.
3
Latent and active p53 are identical in conformation.
Nat Struct Biol. 2001 Sep;8(9):756-60. doi: 10.1038/nsb0901-756.
4
The C-terminus of p53: the more you learn the less you know.
Nat Struct Biol. 2001 Sep;8(9):730-2. doi: 10.1038/nsb0901-730.
6
p53 Latency. C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences.
J Biol Chem. 2001 May 11;276(19):15650-8. doi: 10.1074/jbc.M100482200. Epub 2001 Feb 23.
7
HMG1 and 2, and related 'architectural' DNA-binding proteins.
Trends Biochem Sci. 2001 Mar;26(3):167-74. doi: 10.1016/s0968-0004(01)01801-1.
8
Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein.
J Biol Chem. 2001 Mar 9;276(10):7534-40. doi: 10.1074/jbc.M008143200. Epub 2000 Dec 5.
9
Surfing the p53 network.
Nature. 2000 Nov 16;408(6810):307-10. doi: 10.1038/35042675.
10
p53 C-terminal interaction with DNA ends and gaps has opposing effect on specific DNA binding by the core.
Nucleic Acids Res. 2000 Oct 15;28(20):4005-12. doi: 10.1093/nar/28.20.4005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验