Best Robert B, Fowler Susan B, Toca-Herrera Jose L, Clarke Jane
Department of Chemistry, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12143-8. doi: 10.1073/pnas.192351899. Epub 2002 Sep 6.
Atomic force microscopy is an exciting new single-molecule technique to add to the toolbox of protein (un)folding methods. However, detailed analysis of the unfolding of proteins on application of force has, to date, relied on protein molecular dynamics simulations or a qualitative interpretation of mutant data. Here we describe how protein engineering Phi value analysis can be adapted to characterize the transition states for mechanical unfolding of proteins. Single-molecule studies also have an advantage over bulk experiments, in that partial Phi values arising from partial structure in the transition state can be clearly distinguished from those averaged over alternate pathways. We show that unfolding rate constants derived in the standard way by using Monte Carlo simulations are not reliable because of the errors involved. However, it is possible to circumvent these problems, providing the unfolding mechanism is not changed by mutation, either by a modification of the Monte Carlo procedure or by comparing mutant and wild-type data directly. The applicability of the method is tested on simulated data sets and experimental data for mutants of titin I27.
原子力显微镜是一种令人兴奋的新型单分子技术,可添加到蛋白质(去)折叠方法的工具库中。然而,迄今为止,对施加力时蛋白质展开的详细分析依赖于蛋白质分子动力学模拟或对突变数据的定性解释。在这里,我们描述了如何采用蛋白质工程Phi值分析来表征蛋白质机械展开的过渡态。单分子研究相对于批量实验也具有优势,因为过渡态中部分结构产生的部分Phi值可以与交替途径上平均得到的Phi值清楚地区分开来。我们表明,由于存在误差,使用蒙特卡罗模拟以标准方式得出的展开速率常数并不可靠。然而,只要展开机制不因突变而改变,就有可能通过修改蒙特卡罗程序或直接比较突变体和野生型数据来规避这些问题。该方法的适用性在肌联蛋白I27突变体的模拟数据集和实验数据上进行了测试。