Chen Z., Iyer S., Caplan A., Klessig D. F., Fan B.
Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052 (Z.C., S.I., A.C., B.F.).
Plant Physiol. 1997 May;114(1):193-201. doi: 10.1104/pp.114.1.193.
We previously proposed that salicylic acid (SA)-sensitive catalases serve as biological targets of SA in plant defense responses. To further examine the role of SA-sensitive catalases, we have analyzed the relationship between SA levels and SA sensitivity of catalases in different rice (Oryza sativa) tissues. We show here that, whereas rice shoots contain extremely high levels of free SA, as previously reported (I. Raskin, H. Skubatz, W. Tang, B.J.D. Meeuse [1990] Ann Bot 66: 369-373; P. Silverman, M. Seskar, D. Kanter, P. Schweizer, J.-P. Metraux, I. Raskin [1995] Plant Physiol 108: 633-639), rice roots and cell-suspension cultures have very low SA levels. Catalases from different rice tissues also exhibit differences in sensitivity to SA. Catalase from rice shoots is insensitive to SA, but roots and cell-suspension cultures contain SA-sensitive catalase. The difference in SA sensitivity of catalases from these different tissues correlates with the tissue-specific expression of two catalase genes, CatA and CatB, which encode highly distinctive catalase proteins. CatA, which encodes a catalase with relatively low sequence homology to the tobacco SA-sensitive catalases, is expressed at high levels exclusively in the shoots. On the other hand, in roots and cell-suspension cultures, with northern analysis we detected expression of only the CatB gene, which encodes a catalase with higher sequence homology to tobacco catalases. The role of catalases in mediating some of the SA-induced responses is discussed in light of these results and the recently defined mechanisms of catalase inhibition by SA.
我们之前提出,对水杨酸(SA)敏感的过氧化氢酶在植物防御反应中作为SA的生物学靶点。为了进一步研究对SA敏感的过氧化氢酶的作用,我们分析了不同水稻(Oryza sativa)组织中SA水平与过氧化氢酶对SA敏感性之间的关系。我们在此表明,正如之前所报道的(I. Raskin、H. Skubatz、W. Tang、B.J.D. Meeuse [1990] 《植物学纪事》66: 369 - 373;P. Silverman、M. Seskar、D. Kanter、P. Schweizer、J.-P. Metraux、I. Raskin [1995] 《植物生理学》108: 633 - 639),水稻地上部分含有极高水平的游离SA,而水稻根系和细胞悬浮培养物中的SA水平则非常低。来自不同水稻组织的过氧化氢酶对SA的敏感性也存在差异。水稻地上部分的过氧化氢酶对SA不敏感,但根系和细胞悬浮培养物中含有对SA敏感的过氧化氢酶。这些不同组织的过氧化氢酶对SA敏感性的差异与两个过氧化氢酶基因CatA和CatB的组织特异性表达相关,这两个基因编码高度不同的过氧化氢酶蛋白。CatA编码一种与烟草对SA敏感的过氧化氢酶序列同源性相对较低的过氧化氢酶,仅在地上部分高水平表达。另一方面,在根系和细胞悬浮培养物中,通过Northern分析我们仅检测到CatB基因的表达,该基因编码一种与烟草过氧化氢酶序列同源性较高的过氧化氢酶。根据这些结果以及最近确定的SA抑制过氧化氢酶的机制,讨论了过氧化氢酶在介导一些SA诱导反应中的作用。