Dali Lisa A, Gustin Jean, Perry Kathleen, Domingo Carmen R
Department of Biology, San Francisco State University, San Francisco, Calif 94132, USA.
Cells Tissues Organs. 2002;172(1):1-12. doi: 10.1159/000064387.
Somite formation is a lengthy process that begins at gastrulation and continues through tailbud stages to form approximately 50 pairs of somites in the frog, Xenopus laevis. In Xenopus, the somite primarily gives rise to myotome. We sought to determine whether the formation of somites and myotome requires a transient signal active during gastrulation or a constitutive signal active throughout development to instruct dorsal mesodermal cells to form the posterior somites. Previous work from our lab revealed that cells from the neural ectoderm are capable of responding to mesoderm-inducing signals [Domingo and Keller: Dev Biol 2000;225:226-240]. Thus, to test for the presence of somite-inducing signals, we performed a series of grafting experiments in which we used gastrula cells from the anterior neural ectoderm (ANE). Fluorescently labeled ANE cells were grafted to the posterior paraxial mesoderm of progressively older host embryos between stages 11 (mid gastrula) and 23 (early tailbud). Our results showed that signals within the paraxial mesoderm can instruct prospective ANE cells, which normally give rise to head structures, to instead differentiate into myotome cells. We found that the grafted cells adopted the local paraxial mesoderm cell behaviors, which consists of mediolateral intercalation, segmentation, somite cell rotation, and differentiation to myotome. In addition, we show that the grafted ANE cells that adopt a myotome morphology also express the muscle-specific marker, 12/101. Through a series of heterochronic grafts, we determined that the duration of somite-inducing signals extends from the early gastrula (stage 11) through the early tailbud (stage 23) stage embryos. These results demonstrate that somite induction is not a transient event that occurs during gastrulation, but that it is instead a continuous event that can occur as new somites are added to the posterior axis.
体节形成是一个漫长的过程,始于原肠胚形成期,并持续到尾芽期,在非洲爪蟾(Xenopus laevis)中形成大约50对体节。在非洲爪蟾中,体节主要产生生肌节。我们试图确定体节和生肌节的形成是需要在原肠胚形成期活跃的瞬时信号,还是需要在整个发育过程中活跃的组成性信号,以指导背侧中胚层细胞形成后部体节。我们实验室之前的研究表明,神经外胚层的细胞能够对中胚层诱导信号作出反应[多明戈和凯勒:《发育生物学》2000年;225:226 - 240]。因此,为了测试体节诱导信号的存在,我们进行了一系列移植实验,其中我们使用了来自前神经外胚层(ANE)的原肠胚细胞。将荧光标记的ANE细胞移植到11期(原肠胚中期)至23期(早期尾芽期)逐渐发育成熟的宿主胚胎的后部近轴中胚层。我们的结果表明,近轴中胚层内的信号可以指导通常会形成头部结构的预期ANE细胞分化为生肌节细胞。我们发现移植的细胞采用了局部近轴中胚层细胞的行为,包括中外侧插入、分割、体节细胞旋转以及分化为生肌节。此外,我们表明采用生肌节形态的移植ANE细胞也表达肌肉特异性标记物12/101。通过一系列异时移植,我们确定体节诱导信号的持续时间从早期原肠胚(11期)延伸至早期尾芽(23期)阶段的胚胎。这些结果表明,体节诱导不是在原肠胚形成期发生的瞬时事件,而是一个持续的事件,随着新的体节添加到后部轴而发生。