Gannoun Ali, Girard Stéphane, Guinot Christiane, Saracco Jérôme
Laboratoire de Probabilités et Statistique, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
Stat Med. 2002 Oct 30;21(20):3119-35. doi: 10.1002/sim.1226.
Reference curves which take time into account, such as those for age, are often required in medicine, but simple systematic and efficient statistical methods for constructing them are lacking. Classical methods are based on parametric fitting (polynomial curves). Semi-parametric methods are also widely used especially in Europe. Here, we propose a new methodology for the estimation of reference intervals for data sets, based on non-parametric estimation of conditional quantiles. The derived methods should be applicable to all clinical (or more generally biological) variables that are measured on a continuous quantitative scale. As an example, we analyse a data set collected to establish reference curves for biophysical properties of the skin of healthy French women. The results are compared to those obtained with Royston's polynomial parametric method and the semi-parametric LMS approach.
医学中常常需要考虑时间因素的参考曲线,比如年龄相关的参考曲线,但目前缺乏简单、系统且高效的构建此类曲线的统计方法。经典方法基于参数拟合(多项式曲线)。半参数方法也被广泛应用,尤其在欧洲。在此,我们提出一种基于条件分位数非参数估计的新方法,用于估计数据集的参考区间。所推导的方法应适用于所有以连续定量尺度测量的临床(或更一般地说,生物学)变量。例如,我们分析了一个为建立健康法国女性皮肤生物物理特性参考曲线而收集的数据集。将结果与使用罗伊斯顿多项式参数方法和半参数LMS方法得到的结果进行了比较。