Suppr超能文献

细菌结构蛋白和调节蛋白极性定位的定位因子鉴定

Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins.

作者信息

Viollier Patrick H, Sternheim Nitzan, Shapiro Lucy

机构信息

Department of Developmental Biology, Beckman Center B351, Stanford University School of Medicine, 279 Campus Drive, Palo Alto, CA 94304-5329, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13831-6. doi: 10.1073/pnas.182411999. Epub 2002 Oct 7.

Abstract

Polar pili biogenesis in Caulobacter involves the asymmetric localization of the CpaE and CpaC components of the pili-specific secretion apparatus to one pole of the predivisional cell followed by the biosynthesis of the pili filaments in the daughter swarmer cell. The histidine kinase signaling protein, PleC, that controls the temporal accumulation of the PilA pilin subunit is asymmetrically localized to the pole at which pili are assembled. Here we identify a protein, PodJ, that provides the positional information for the polar localization of both PleC and CpaE. The PodJ protein was found to exist in two forms, a truncated 90-kDa and a full-length 110-kDa form, each controlling a different aspect of polar development and each localizing to the cell poles at a specific time in the cell cycle. When active PleC is delocalized in a DeltapodJ mutant, the accumulation of PilA, the downstream target of PleC signaling, is impaired, providing evidence that the polar localization of this histidine kinase stimulates the response signaled by a two-component system.

摘要

柄杆菌中极性菌毛的生物合成涉及菌毛特异性分泌装置的CpaE和CpaC组分在即将分裂的细胞的一极不对称定位,随后在子代游动细胞中进行菌毛丝的生物合成。控制菌毛蛋白亚基PilA的时间积累的组氨酸激酶信号蛋白PleC不对称定位于组装菌毛的极。在这里,我们鉴定了一种蛋白质PodJ,它为PleC和CpaE的极性定位提供位置信息。发现PodJ蛋白以两种形式存在,一种截短的90 kDa形式和一种全长的110 kDa形式,每种形式控制极性发育的不同方面,并且每种形式在细胞周期的特定时间定位于细胞极。当活性PleC在DeltapodJ突变体中发生去定位时,PleC信号的下游靶标PilA的积累受损,这证明这种组氨酸激酶的极性定位刺激了双组分系统发出的信号反应。

相似文献

1
Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins.
Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13831-6. doi: 10.1073/pnas.182411999. Epub 2002 Oct 7.
4
Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescentus.
Mol Microbiol. 2006 Jan;59(1):301-16. doi: 10.1111/j.1365-2958.2005.04935.x.
6
Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4095-100. doi: 10.1073/pnas.051609998. Epub 2001 Mar 13.
7
Differential localization of two histidine kinases controlling bacterial cell differentiation.
Mol Cell. 1999 Nov;4(5):683-94. doi: 10.1016/s1097-2765(00)80379-2.
9
The scaffolding and signalling functions of a localization factor impact polar development.
Mol Microbiol. 2012 May;84(4):712-35. doi: 10.1111/j.1365-2958.2012.08055.x. Epub 2012 Apr 19.
10
Regulation of the activity of the bacterial histidine kinase PleC by the scaffolding protein PodJ.
J Biol Chem. 2022 Apr;298(4):101683. doi: 10.1016/j.jbc.2022.101683. Epub 2022 Feb 3.

引用本文的文献

1
Construction and phenotypic classification of synthetic dual-pole Escherichia coli cells.
Commun Biol. 2025 Jul 20;8(1):1078. doi: 10.1038/s42003-025-08495-w.
2
Biomolecular condensates as stress sensors and modulators of bacterial signaling.
PLoS Pathog. 2024 Aug 15;20(8):e1012413. doi: 10.1371/journal.ppat.1012413. eCollection 2024 Aug.
3
Phosphatase to kinase switch of a critical enzyme contributes to timing of cell differentiation.
mBio. 2024 Jan 16;15(1):e0212523. doi: 10.1128/mbio.02125-23. Epub 2023 Dec 6.
4
Scaffold-Scaffold Interaction Facilitates Cell Polarity Development in Caulobacter crescentus.
mBio. 2023 Apr 25;14(2):e0321822. doi: 10.1128/mbio.03218-22. Epub 2023 Mar 27.
5
Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub.
Nat Commun. 2022 Nov 23;13(1):7181. doi: 10.1038/s41467-022-35000-2.
6
Computational modeling of unphosphorylated CtrA: binding in the cell cycle.
iScience. 2021 Nov 10;24(12):103413. doi: 10.1016/j.isci.2021.103413. eCollection 2021 Dec 17.
9
Positioning the Model Bacterial Organelle, the Carboxysome.
mBio. 2021 May 11;12(3):e02519-19. doi: 10.1128/mBio.02519-19.
10
A localized adaptor protein performs distinct functions at the cell poles.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2024705118.

本文引用的文献

2
Dynamic localization of proteins and DNA during a bacterial cell cycle.
Nat Rev Mol Cell Biol. 2002 Mar;3(3):167-76. doi: 10.1038/nrm758.
3
Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle.
Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4632-7. doi: 10.1073/pnas.062065699.
4
A moving DNA replication factory in Caulobacter crescentus.
EMBO J. 2001 Sep 3;20(17):4952-63. doi: 10.1093/emboj/20.17.4952.
5
Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4095-100. doi: 10.1073/pnas.051609998. Epub 2001 Mar 13.
6
Global analysis of the genetic network controlling a bacterial cell cycle.
Science. 2000 Dec 15;290(5499):2144-8. doi: 10.1126/science.290.5499.2144.
7
Identification and cell cycle control of a novel pilus system in Caulobacter crescentus.
EMBO J. 2000 Jul 3;19(13):3223-34. doi: 10.1093/emboj/19.13.3223.
8
Differential localization of two histidine kinases controlling bacterial cell differentiation.
Mol Cell. 1999 Nov;4(5):683-94. doi: 10.1016/s1097-2765(00)80379-2.
9
Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation.
Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8173-7. doi: 10.1073/pnas.96.14.8173.
10
Regulation of podJ expression during the Caulobacter crescentus cell cycle.
J Bacteriol. 1999 Jul;181(13):3967-73. doi: 10.1128/JB.181.13.3967-3973.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验