Suppr超能文献

颈动脉体中氧传感器候选物(氧化酶、细胞色素、钾通道)的细胞分布。

Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.

作者信息

Kummer Wolfgang, Yamamoto Yoshio

机构信息

Institute for Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany.

出版信息

Microsc Res Tech. 2002 Nov 1;59(3):234-42. doi: 10.1002/jemt.10197.

Abstract

The specific tissue of the carotid body is built up of groups of glomus cells, enveloped by glial-type sustentacular cells, and innervated by sensory nerve fibers. These units sense arterial pO(2) and respond to hypoxia by a variety of reactions that include initiation of the arterial chemoreflex, i.e., increasing firing activity in the carotid sinus nerve. Until now, neither the cellular localization of the initial events that lead to stimulation of chemoreceptor afferents nor the molecular mechanism of oxygen sensing in the carotid body have been unequivocally identified. Proposed molecular candidates for the mechanism of oxygen sensing include: 1). components of the mitochondrial respiratory chain, 2). NADPH oxidases generating reactive oxygen species in an oxygen-dependent manner, 3). oxygen-regulated plasmalemmal K(+)-channels, and 4). nonoxidase iron-proteins. Our still limited knowledge on their cellular distribution within the carotid body is reviewed here. It is evident that: 1). the distribution of at least some oxygen sensor candidates is not ubiquitous but cell-type-specific, and 2). each specific parenchymal cell type of the carotid body contains at least one of the proposed oxygen sensor candidates. This applies also for the glial-type sustentacular cells that exhibit immunoreactivity to the two-pore domain K(+)-channel, TASK-1. These observations fit best with the assumption that each cell type within the carotid body is principally responsive to hypoxia. The differential equipping of glomus cells, nerve endings, and sustentacular cells with sensor proteins might serve to determine different thresholds of sensitivity and/or to connect the process of oxygen sensing to different signaling pathways. It also favors the assumption that several mechanisms of oxygen sensing may act simultaneously. The cellular identification of the cell type initiating the chemoreceptor reflex, however, has to await the molecular identification of the particular oxygen sensor molecule that initiates increased carotid sinus nerve activity.

摘要

颈动脉体的特定组织由成组的球细胞构成,这些球细胞被神经胶质型支持细胞包裹,并由感觉神经纤维支配。这些单元感知动脉血氧分压(pO₂),并通过多种反应对缺氧作出应答,这些反应包括启动动脉化学反射,即增加颈动脉窦神经的放电活动。到目前为止,导致化学感受器传入神经兴奋的初始事件的细胞定位以及颈动脉体中氧感应的分子机制均未得到明确鉴定。关于氧感应机制的分子候选物包括:1)线粒体呼吸链的组成成分;2)以氧依赖方式产生活性氧的NADPH氧化酶;3)氧调节的质膜钾通道;4)非氧化酶铁蛋白。本文综述了我们目前对它们在颈动脉体内细胞分布的有限认识。很明显:1)至少一些氧传感器候选物的分布并非普遍存在,而是具有细胞类型特异性;2)颈动脉体的每种特定实质细胞类型至少包含一种提出的氧传感器候选物。这也适用于对双孔结构域钾通道TASK-1表现出免疫反应性的神经胶质型支持细胞。这些观察结果最符合这样的假设,即颈动脉体内的每种细胞类型原则上都对缺氧有反应。球细胞、神经末梢和支持细胞在传感器蛋白方面的差异配备可能有助于确定不同的敏感性阈值和/或将氧感应过程连接到不同的信号通路。这也支持了几种氧感应机制可能同时起作用的假设。然而,引发化学感受器反射的细胞类型的细胞鉴定必须等待引发颈动脉窦神经活动增加的特定氧传感器分子的分子鉴定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验