Suppr超能文献

辛德毕斯病毒中结构蛋白的定位

Placement of the structural proteins in Sindbis virus.

作者信息

Zhang Wei, Mukhopadhyay Suchetana, Pletnev Sergei V, Baker Timothy S, Kuhn Richard J, Rossmann Michael G

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.

出版信息

J Virol. 2002 Nov;76(22):11645-58. doi: 10.1128/jvi.76.22.11645-11658.2002.

Abstract

The structure of the lipid-enveloped Sindbis virus has been determined by fitting atomic resolution crystallographic structures of component proteins into an 11-A resolution cryoelectron microscopy map. The virus has T=4 quasisymmetry elements that are accurately maintained between the external glycoproteins, the transmembrane helical region, and the internal nucleocapsid core. The crystal structure of the E1 glycoprotein was fitted into the cryoelectron microscopy density, in part by using the known carbohydrate positions as restraints. A difference map showed that the E2 glycoprotein was shaped similarly to E1, suggesting a possible common evolutionary origin for these two glycoproteins. The structure shows that the E2 glycoprotein would have to move away from the center of the trimeric spike in order to expose enough viral membrane surface to permit fusion with the cellular membrane during the initial stages of host infection. The well-resolved E1-E2 transmembrane regions form alpha-helical coiled coils that were consistent with T=4 symmetry. The known structure of the capsid protein was fitted into the density corresponding to the nucleocapsid, revising the structure published earlier.

摘要

脂质包膜辛德毕斯病毒的结构已通过将组成蛋白的原子分辨率晶体结构拟合到11埃分辨率的冷冻电子显微镜图谱中得以确定。该病毒具有T = 4准对称元件,这些元件在外膜糖蛋白、跨膜螺旋区域和内部核衣壳核心之间精确保持。通过部分利用已知的碳水化合物位置作为约束条件,将E1糖蛋白的晶体结构拟合到冷冻电子显微镜密度图中。差异图显示E2糖蛋白的形状与E1相似,表明这两种糖蛋白可能有共同的进化起源。该结构表明,在宿主感染的初始阶段,E2糖蛋白必须从三聚体刺突的中心移开,以便暴露出足够的病毒膜表面,从而允许与细胞膜融合。解析良好的E1 - E2跨膜区域形成α - 螺旋卷曲螺旋,这与T = 4对称性一致。将衣壳蛋白的已知结构拟合到对应于核衣壳的密度图中,修正了先前发表的结构。

相似文献

1
Placement of the structural proteins in Sindbis virus.
J Virol. 2002 Nov;76(22):11645-58. doi: 10.1128/jvi.76.22.11645-11658.2002.
2
Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses.
Structure. 2006 Jan;14(1):63-73. doi: 10.1016/j.str.2005.07.025.
3
Structural changes of envelope proteins during alphavirus fusion.
Nature. 2010 Dec 2;468(7324):705-8. doi: 10.1038/nature09546.
4
7
Crystallization of Sindbis virus and its nucleocapsid.
J Mol Biol. 1992 Jul 5;226(1):277-80. doi: 10.1016/0022-2836(92)90141-6.
8
Disulfide bridge-mediated folding of Sindbis virus glycoproteins.
J Virol. 1996 Aug;70(8):5541-7. doi: 10.1128/JVI.70.8.5541-5547.1996.
10
Structural characterization of the E2 glycoprotein from Sindbis by lysine biotinylation and LC-MS/MS.
Virology. 2006 Apr 25;348(1):216-23. doi: 10.1016/j.virol.2005.12.020. Epub 2006 Jan 26.

引用本文的文献

2
Live Imaging and Interactome Analysis of Zika and Chikungunya Viral RNAs Via Dual-Action Aptamer Tag.
Res Sq. 2025 Jul 7:rs.3.rs-6992950. doi: 10.21203/rs.3.rs-6992950/v1.
3
Maturation of Viruses.
Subcell Biochem. 2024;105:503-531. doi: 10.1007/978-3-031-65187-8_14.
4
How structural biology has changed our understanding of icosahedral viruses.
J Virol. 2024 Oct 22;98(10):e0111123. doi: 10.1128/jvi.01111-23. Epub 2024 Sep 18.
5
Grass carp reovirus VP56 and VP35 induce formation of viral inclusion bodies for replication.
iScience. 2023 Dec 7;27(1):108684. doi: 10.1016/j.isci.2023.108684. eCollection 2024 Jan 19.
6
Structural constraints link differences in neutralization potency of human anti-Eastern equine encephalitis virus monoclonal antibodies.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2213690120. doi: 10.1073/pnas.2213690120. Epub 2023 Mar 24.
7
Cryo-EM structures of alphavirus conformational intermediates in low pH-triggered prefusion states.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2114119119. doi: 10.1073/pnas.2114119119. Epub 2022 Jul 22.
8
Capsid-E2 Interactions Rescue Core Assembly in Viruses That Cannot Form Cytoplasmic Nucleocapsid Cores.
J Virol. 2021 Oct 27;95(22):e0106221. doi: 10.1128/JVI.01062-21. Epub 2021 Sep 8.
9
Minimal Design Principles for Icosahedral Virus Capsids.
ACS Nano. 2021 Sep 28;15(9):14873-14884. doi: 10.1021/acsnano.1c04952. Epub 2021 Sep 7.
10
The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat.
Pathogens. 2021 Jul 31;10(8):973. doi: 10.3390/pathogens10080973.

本文引用的文献

1
Physical principles in the construction of regular viruses.
Cold Spring Harb Symp Quant Biol. 1962;27:1-24. doi: 10.1101/sqb.1962.027.001.005.
2
Combining electron microscopic with x-ray crystallographic structures.
J Struct Biol. 2001 Dec;136(3):190-200. doi: 10.1006/jsbi.2002.4435.
3
Structure of dengue virus: implications for flavivirus organization, maturation, and fusion.
Cell. 2002 Mar 8;108(5):717-25. doi: 10.1016/s0092-8674(02)00660-8.
4
The geometry of domain combination in proteins.
J Mol Biol. 2002 Jan 25;315(4):927-39. doi: 10.1006/jmbi.2001.5288.
5
Modeling tricks and fitting techniques for multiresolution structures.
Structure. 2001 Sep;9(9):779-88. doi: 10.1016/s0969-2126(01)00648-7.
6
Structure of Arp2/3 complex in its activated state and in actin filament branch junctions.
Science. 2001 Sep 28;293(5539):2456-9. doi: 10.1126/science.1063025. Epub 2001 Aug 30.
7
Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus.
Mol Cell. 2001 Mar;7(3):593-602. doi: 10.1016/s1097-2765(01)00206-4.
9
10
Virus evolution: how does an enveloped virus make a regular structure?
Cell. 2001 Apr 6;105(1):5-8. doi: 10.1016/s0092-8674(01)00291-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验